题意:
给你f[i] = f[i-1] + 2*f[i-2] + i^4,输入f[1] 和 f[2] 求 f[n]。
Input
输入一个T(1<T<100),表示数据组数。
每组数据给出三个数 n,f[1],f[2](1<n,f[1],f[2] < 2^31)。
Output
输出f[n],f[n]可能比较大,请输出取模2147493647后的结果。
Sample Input
2
3 1 2
4 1 10
Sample Output
85
369
手推一波矩阵(7*7)
然后刚开始那个矩阵的样子应该是这样的
f [2]
f [1]
16
8
4
2
1
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 2147493647;
struct mat
{
ll jz[7][7];
};
mat init()//返回的是单位矩阵
{
mat a;
memset(a.jz,0,sizeof(a.jz));
for(int i = 0; i < 7; i++)
{
a.jz[i][i] = 1;
}
return a;
}
mat matmul(mat a,mat b)//矩阵相乘
{
mat c;
memset(c.jz,0,sizeof(c.jz));
for(int k = 0; k < 7; k++)
for(int i = 0; i < 7; i++)
if(a.jz[i][k])//在这里有一个小优化,但是感觉一般题目不会卡这里
for(int j = 0; j < 7; j++)
c.jz[i][j] = (c.jz[i][j]+a.jz[i][k]*b.jz[k][j])%mod;
return c;
}
mat matpow(ll n)//矩阵快速幂
{
mat tep;
tep = {
1,2,1,4,6,4,1,
1,0,0,0,0,0,0,
0,0,1,4,6,4,1,
0,0,0,1,3,3,1,
0,0,0,0,1,2,1,
0,0,0,0,0,1,1,
0,0,0,0,0,0,1,
};//原来这样也可以初始化矩阵,学到了,这样更好看一些
mat ans;
ans = init();//把ans初始化为单位矩阵
while(n)
{
if(n&1) ans = matmul(ans,tep);
tep = matmul(tep,tep);
n >>= 1;
}
return ans;
}
int main()
{
int t;
ll x,y,n;
cin >> t;
while(t--)
{
cin >> n >> x >> y;
mat fir;
fir.jz[0][0] = y;
fir.jz[1][0] = x;
fir.jz[2][0] = 16;
fir.jz[3][0] = 8;
fir.jz[4][0] = 4;
fir.jz[5][0] = 2;
fir.jz[6][0] = 1;
mat temp = matpow(n-2);
fir = matmul(temp,fir);
cout << fir.jz[0][0]%mod << endl;
}
return 0;
}