L2-029 特立独行的幸福 (25分)
对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。
本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。
输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10 4 。
输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。
如果区间内没有幸福数,则在一行中输出 SAD。
输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD
#include <bits/stdc++.h>
#define pb push_back
#define mem(a,b) memset(a,b,sizeof a)
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
/// 返回2为素数
int issu(int a)
{
if(a<=1) return 1;
for(int i=2;i*i<=a;i++)
{
if(a%i==0) return 1;
}
return 2;
}
int main()
{
int a,b,ap[100001]={0};
cin>>a>>b;
map<int,int> res;/// 如果是幸福的,那么记录得分
for(int i=a;i<=b;i++)
{
vector<int> vv;/// 记录经过
int sum=0,x=i;
while(x!=1)
{
sum=0;
/// 计算一次迭代
while(x)
{
sum+=pow(x%10,2);
x/=10;
}
x=sum;
/// 如果发现曾经有一个一样的
if(find(vv.begin(),vv.end(),sum)!=vv.end())
{
break;
}
vv.pb(sum);/// 记录曾经
ap[sum]=1;///不独立了
}
if(sum==1) res[i]=vv.size();/// 得分
}
int flag=0;
for(auto it=res.begin();it!=res.end();it++)
{
if(!ap[it->first])
{
cout<<it->first<<" "<<it->second*issu(it->first)<<endl;
flag=1;
}
}
if(flag==0) cout<<"SAD";
return 0;
}