
人工智能相关
文章平均质量分 67
人工智能相关
Koma_zhe
虚心学习,积累知识
展开
-
【提示词模板】扣子官方提示词书写模板
【提示词模板】扣子官方提示词书写模板原创 2025-03-24 11:24:00 · 387 阅读 · 0 评论 -
【IEEE TDKE 2020】Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
【IEEE TDKE 2020】Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning原创 2023-04-15 14:19:58 · 978 阅读 · 1 评论 -
【AAAI 2017】Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction
【AAAI 2017】Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction原创 2023-04-13 14:15:01 · 826 阅读 · 0 评论 -
【WSDM 2018】Predicting Multi-step Citywide Passenger Demands Using Atention-based Neural Networks
Predicting Multi-step Citywide Passenger Demands Using Atention-based Neural Networks (基于注意力机制的神经网络多步预测全市客运需求)原创 2023-04-11 19:11:04 · 227 阅读 · 0 评论 -
【生成对抗网络】GAN生成对抗网络理论知识
【生成对抗网络】GAN生成对抗网络理论知识原创 2022-12-28 11:12:43 · 1737 阅读 · 0 评论 -
【Transformer】Transformer理论知识
【Transformer】Transformer理论知识原创 2022-12-04 20:45:52 · 1861 阅读 · 0 评论 -
【注意力机制】Self-attention注意力机制理论知识
【Self-attention】注意力机制理论知识原创 2022-12-03 12:51:25 · 1824 阅读 · 0 评论 -
【PaddleNLP学习】PaddleNLP笔记
PaddleNLP学习笔记原创 2022-10-03 21:59:44 · 5409 阅读 · 5 评论 -
【PaddleHub学习】PaddleHub的案例
PaddleHub案例原创 2022-10-03 15:27:31 · 450 阅读 · 0 评论 -
【Paddle学习】Paddle案例
【代码】【Paddle学习笔记】Paddle案例。转载 2022-10-02 11:21:05 · 1309 阅读 · 0 评论 -
【CUDA】判断电脑CUDA和cuDNN是否安装成功(Windows)
【代码】【CUDA】判断电脑CUDA和cuDNN是否安装成功(Windows)原创 2022-09-27 16:28:32 · 13735 阅读 · 2 评论 -
【分类之KNN】KNN实例学习
【分类之KNN】KNN实例学习原创 2022-06-13 17:03:23 · 370 阅读 · 0 评论 -
【聚类K-Means应用图像分割】K-Means应用图像分割实例
目标:利用Kmeans对图像像素点颜色进行聚类实现简单的图像分割输出:同一聚类中的点使用相同颜色标记,不同聚类颜色不同结果:原创 2022-06-13 16:21:10 · 1111 阅读 · 0 评论 -
【降维之NMF】NMF(非负矩阵分解)实例
数据介绍:NMF人脸数据特征提取目标:已知 Olivetti 人脸数据共400个,每个数据是 64*64 大小。由于NMF分解得到的 W 矩阵相当于从原始矩阵中提取的特征,那么就可以使用NMF对400个人脸数据进行特征提取。结果:...原创 2022-06-13 15:10:06 · 1495 阅读 · 3 评论 -
【降维之PCA】PCA实例
数据介绍:PCA实现高维数据可视化目标:已知莺尾花数据是4维的,共三类样本(150*4)。使用 РСA实现鸢尾花数据进行降维,实现在二维平面上的可视化。原创 2022-06-13 14:10:15 · 1072 阅读 · 0 评论 -
【聚类之DBSCAN】DBSCAN实例
数据介绍:现有大学校园网的日志数据, 290条大学生的校园网使用情况数据,数据包括用PID, i的МAС地址,开始始上网时间,停止上网时间,上网时长,校园网套餐等。利用已有数据,分析学生上网的模式。通过DBSCAN分析上网时间与上网时长的模式。附上数据文件(学生月上网时间分布-TestData.txt):...............原创 2022-06-09 17:23:33 · 1424 阅读 · 0 评论 -
【聚类之K-Means】K-Means学习实例
数据介绍:现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八个主要变量数据,这八个变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。附上数据文件(31省市居民家庭消费水平-city.txt):......原创 2022-06-09 14:54:59 · 2006 阅读 · 0 评论 -
【OpenCV】 OpenCV图像匹配识别滑动验证码缺口
OpenCV 图像匹配识别滑动验证码缺口原创 2022-06-06 15:39:17 · 4089 阅读 · 2 评论 -
【NLP】NLP基础知识
目录自然语言处理主要内容自然语言的构成自然语言处理的步骤1:词法分析1 分词:2 实体识别3 实体识别方法:序列标注4 序列标注关键算法:5 序列标注应用:5.1 新词发现:5.2 领域中文分词5.3 命名实体识别5.4 依存句法分析(帮助句法分析)自然语言处理的步骤2:句法分析1 主题模型与特征提取1.1 TF-IDF1.2 主题模型1.3 LDA(潜在狄利克雷分配Latent Dirichlet Allocation)1.4 词向量与分布式表示2 文本分类与相似度量自然语言处理的步骤3:语原创 2022-05-07 10:48:37 · 23141 阅读 · 3 评论 -
【模型评价指标】分析模型评价常用指标
常用的聚类模型评价指标:ARI评价法(兰德系数)、AMI评价法(互信息)、V-measure评分、FMI评价法、轮廓系数 等常用的分类模型评价指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1值(F1 Value)、ROC和AUC 等常用的回归模型评价指标:平均绝对误差、均方误差、中值绝对误差、可解释方差值 等......原创 2022-03-06 10:07:53 · 3181 阅读 · 0 评论 -
【神经网络】经典神经网络理论
文章目录五、经典神经网络解析(ImageNet大规模视觉识别挑战赛):5.1、AlexNet(2012年8层神经网络)总结 AlexNet :5.2、ZFNet(2013年8层神经网络)5.3、VGG(2014年16、19层神经网络)总结VGG:5.4、GoogleNet(2014年22层神经网络)串联结构存在的问题:举例子计算说明:5.5、ResNet(2015年152层神经网络,3.6%低于人类错误率5.1%)ResNet的改变:总结ResNet:5.6、本章总结五、经典神经网络解析(ImageNet原创 2021-11-14 16:52:01 · 1550 阅读 · 0 评论 -
【神经网络】卷积神经网络理论
文章目录四、卷积神经网络4.1 卷积与图像去噪1、卷积的性质:2、高斯卷积核(高斯滤波:线性滤波器):高斯卷积核(解决平均卷积存在的问题)卷积核参数小结:高斯卷积核的特性:3、图像噪声与中值滤波器(非线性滤波器):高斯噪声:中值滤波器(非线性滤波器):4.2 卷积与边缘提取边缘的种类:噪声对求边缘的影响:非极大值抑制(让边变细):Canny边缘检测器(双阈值)(解决有噪声的边):4.3 纹理表示1、基于卷积核组的纹理表示法:2、纹理分类任务(忽略纹理的位置):3、卷积核组的设计:4、卷积神经网络:全连接神经原创 2021-11-14 16:50:25 · 3480 阅读 · 0 评论 -
【神经网络】全连接神经网络理论
文章目录三、全连接神经网络(多层感知器)3.1 网络结构设计:3.2 损失函数:1、SOFTMAX(把分数变成概率)2、交叉熵损失3.3 优化算法:1、计算图与反向传播:2、再谈损失函数(梯度消失问题):3、解决梯度消失问题:动量法与自适应梯度解决方法1:动量法(累加让震荡方向互相抵消)解决方法2:自适应梯度AdaGrad 与改进的RMSProp(使用不同方向步长)解决方法:ADAM(把动量法与自适应梯度合一块)3.4 训练过程1、权值初始化(希望通过调整权值让输出有和输入相同的分布)解决方法:Xavier原创 2021-11-14 16:47:52 · 4754 阅读 · 0 评论 -
【线性分类器】线性分类器理论知识
文章目录一、图像分类任务二、线性分类器:2.1 图像表示:2.2 损失函数:多类支持向量机损失:2.3 正则项与超参数:K折交叉验证:2.4 优化算法:梯度下降法(SGD):随机梯度下降:小批量梯度下降法:三、全连接神经网络(多层感知器)3.1 网络结构设计:3.2 损失函数:1、SOFTMAX(把分数变成概率)2、交叉熵损失3.3 优化算法:1、计算图与反向传播:2、再谈损失函数(梯度消失问题):3、解决梯度消失问题:动量法与自适应梯度解决方法1:动量法(累加让震荡方向互相抵消)解决方法2:自适应梯度Ad原创 2021-11-05 23:11:56 · 6128 阅读 · 1 评论