16. 数值的整数次方

这篇博客介绍了如何用C++实现剑指Offer中的一个问题——数值的整数次方。通过二分法优化算法,实现了在O(logn)的时间复杂度内计算x的n次方。当n为负数时,特别处理了n等于INT_MIN的情况,以避免溢出。此外,代码还分别处理了n为偶数和奇数的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指 Offer 16. 数值的整数次方

思路:二分法

考虑n<0的情况,如果n<0&&n==INT_MIN,则需要对n进行处理;否则正常取反

当n>0时,如果n能被2整除,对n进行二分;否则进行减一操作

class Solution {
public:
    double myPow(double x, int n) {
        if(n==0) return 1;
        if(n<0){
            if(n==INT_MIN) return myPow(1/x,-(n+1))*1/x;
            else
                return myPow(1/x,-n);
        }
        else{
            if(n%2==0) return myPow(x*x,n/2);
            else return myPow(x,n-1)*x;
        }
    }
};

时间复杂度 O(logn)

空间复杂度 O(logn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值