01迷宫(深搜+并查集变形)

题目描述
有一个仅由数字00与11组成的n \times nn×n格迷宫。若你位于一格0上,那么你可以移动到相邻44格中的某一格11上,同样若你位于一格1上,那么你可以移动到相邻44格中的某一格00上。

你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

输入格式
第11行为两个正整数n,mn,m。

下面nn行,每行nn个字符,字符只可能是00或者11,字符之间没有空格。

接下来mm行,每行22个用空格分隔的正整数i,ji,j,对应了迷宫中第ii行第jj列的一个格子,询问从这一格开始能移动到多少格。

输出格式
mm行,对于每个询问输出相应答案。

输入输出样例
输入 #1复制
2 2
01
10
1 1
2 2
输出 #1复制
4
4
说明/提示
所有格子互相可达。

对于20%20%的数据,n≤10n≤10;

对于40%40%的数据,n≤50n≤50;

对于50%50%的数据,m≤5m≤5;

对于60%60%的数据,n≤100,m≤100n≤100,m≤100;

对于100%100%的数据,n≤1000,m≤100000n≤1000,m≤100000。

#include <bits/stdc++.h>
using namespace std;
char Map[1002][1002];
int f[1002][1002], ans[100002]; 
/*这里的f数组用到了类似于并查集的方法,表示在这个连通块内的DFS结果(这个DFS结果存在了ans数组内)的下标
原因:因为如果每次更新初始位置都要再DFS一遍会超时
*/

int n, m;

void DFS(int i, int j, int pre, int num){
    if(i < 0 || i >= n || j < 0 || j >= n|| Map[i][j] - '0' != pre || f[i][j] != -1){
        return;
    }
    f[i][j] = num;
    ans[num]++;
    /*因为每一次走的格子的值会变化,而且恰好就是上一次的取非值
    */
    DFS(i+1, j, !pre, num);
    DFS(i, j+1, !pre, num);
    DFS(i-1, j, !pre, num);
    DFS(i, j-1, !pre, num);

}
int main(){
    ios::sync_with_stdio(false);

    cin >> n >> m;
    for(int i = 0; i < n; i++){
        cin >> Map[i];
    }
    int x, y;
    memset(f, -1, sizeof(f));
    memset(ans, 0, sizeof(ans));
    for(int i = 0; i < m; i++){
        cin >> x >> y;
        x--;y--;
        if(f[x][y] == -1){
            DFS(x, y, Map[x][y] - '0', i);
        }else{
        	//之前找过了
            ans[i] = ans[f[x][y]];
        }
    }
    for(int i = 0; i < m ; i++){
        cout << ans[i] << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值