题意
给你一张带权无向图,包括起点和终点,在 n n n天中,每天要选出一条路径,有几个点会在一段时间内不可用,若两天之间所选路径不一样,要花代价 k k k更改路径。总代价是 n n n天路径长度之和加更改代价。
解法
考虑 d p [ i ] dp[i] dp[i]表示前 i i i天总花费,有 d p [ i ] = d p [ j − 1 ] + ( i − j + 1 ) ∗ v a l + k dp[i] = dp[j-1]+(i-j+1)*val+k dp[i]=dp[j−1]+(i−j+1)∗val+k,其中 v a l val val表示第 i i i~ j j j天可选的点的最短路的代价。
注意:
d p [ 0 ] = − k dp[0] = -k dp[0]=−k,因为第0天到第i天路径就是初始路径,不用花费 k k k。
#include<bits/stdc++.h>
#define ll long long
#define N
using namespace std;
int n,m,k,g,d,dis[25],dp[105];
bool used[25][105],inq[25],vis[25];
struct edge{
int to,w;
edge(){}
edge(int a,int b){to = a;w = b;}
} ;
vector<edge> e[25];
queue<int> q;
int spfa(){
memset(dis,0x3f,sizeof(dis));
memset(inq,0,sizeof(inq));
dis[1] = 0;inq[1] = 1;
while(!q.empty()) q.pop();
q.push(1);
while(!q.empty()){
int u = q.front();q.pop();
inq[u] = 0;
// cout << u << ' ';
for(int i = 0;i < e[u].size();++i){
int v = e[u][i].to;
if(vis[v]) continue;
if(dis[u]+e[u][i].w < dis[v]){
dis[v] = dis[u]+e[u][i].w;
if(!inq[v]){
inq[v] = 1;
q.push(v);
}
}
}
}
// cout <<"dis :" << dis[m] << endl;
return dis[m];
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
scanf("%d%d%d%d",&n,&m,&k,&g);
for(int i = 1;i <= g;++i){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
e[a].push_back(edge(b,c));
e[b].push_back(edge(a,c));
}
scanf("%d",&d);
for(int i = 1;i <= d;++i){
int p,a,b;
scanf("%d%d%d",&p,&a,&b);
for(int j = a;j <= b;++j) used[p][j] = 1;
}
memset(dp,0x3f,sizeof(dp));
dp[0] = -k;
for(int i = 1;i <= n;++i){
memset(vis,0,sizeof(vis));
for(int j = i;j >= 1;--j){
for(int p = 1;p <= m;++p)
if(used[p][j]) vis[p] = 1;
int val = spfa();
if(val == 0x3f3f3f3f) break;
// cout << i << " " << j << endl;
dp[i] = min(dp[i],dp[j-1]+(i-j+1)*val+k);
}
}
printf("%d",dp[n]);
return 0;
}
/*
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
*/