[ZJOI2006]物流运输(dp,最短路)

这是一个关于ZJOI2006年物流运输问题的解题报告。题目要求在一张带权无向图中,每天选择路径,并考虑某些点在特定时间内不可用以及路径更改的代价。通过动态规划和最短路算法,可以求解出前i天的最小总代价。在计算dp[i]时,需要考虑更改路径的代价k以及可选路径的最短路代价。
摘要由CSDN通过智能技术生成

Link

题意

给你一张带权无向图,包括起点和终点,在 n n n天中,每天要选出一条路径,有几个点会在一段时间内不可用,若两天之间所选路径不一样,要花代价 k k k更改路径。总代价是 n n n天路径长度之和加更改代价。

解法

考虑 d p [ i ] dp[i] dp[i]表示前 i i i天总花费,有 d p [ i ] = d p [ j − 1 ] + ( i − j + 1 ) ∗ v a l + k dp[i] = dp[j-1]+(i-j+1)*val+k dp[i]=dp[j1]+(ij+1)val+k,其中 v a l val val表示第 i i i~ j j j天可选的点的最短路的代价。

注意:

d p [ 0 ] = − k dp[0] = -k dp[0]=k,因为第0天到第i天路径就是初始路径,不用花费 k k k

#include<bits/stdc++.h>
#define ll long long
#define N
using namespace std;
int n,m,k,g,d,dis[25],dp[105];
bool used[25][105],inq[25],vis[25];
struct edge{
	int to,w;
	edge(){}
	edge(int a,int b){to = a;w = b;}
} ;
vector<edge> e[25];
queue<int> q;
int spfa(){
	memset(dis,0x3f,sizeof(dis));
	memset(inq,0,sizeof(inq));
	dis[1] = 0;inq[1] = 1;
	while(!q.empty()) q.pop();
	q.push(1);
	while(!q.empty()){
		int u = q.front();q.pop();
		inq[u] = 0;
	//	cout << u << ' ';
		for(int i = 0;i < e[u].size();++i){
			int v = e[u][i].to;
			if(vis[v]) continue;
			if(dis[u]+e[u][i].w < dis[v]){
				dis[v] = dis[u]+e[u][i].w;
				if(!inq[v]){
					inq[v] = 1;
					q.push(v);
				}
			}
		}
	}
//	cout <<"dis :" << dis[m] << endl;
	return dis[m];
}
int main(){
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	scanf("%d%d%d%d",&n,&m,&k,&g);
	for(int i = 1;i <= g;++i){
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		e[a].push_back(edge(b,c));
		e[b].push_back(edge(a,c));
	}
	scanf("%d",&d);
	for(int i = 1;i <= d;++i){
		int p,a,b;
		scanf("%d%d%d",&p,&a,&b);
		for(int j = a;j <= b;++j) used[p][j] = 1;
	}
	memset(dp,0x3f,sizeof(dp));
	dp[0] = -k;
	for(int i = 1;i <= n;++i){
		memset(vis,0,sizeof(vis));
		for(int j = i;j >= 1;--j){
			for(int p = 1;p <= m;++p)
				if(used[p][j]) vis[p] = 1;
			int val = spfa();
			if(val == 0x3f3f3f3f) break;
		//	cout << i << " " << j << endl;
			dp[i] = min(dp[i],dp[j-1]+(i-j+1)*val+k);
		}
	}
	printf("%d",dp[n]);
	return 0;
}
/*
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1             
3 3 3
4 4 5
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值