题意
给你一个 01 01 01矩阵,每个操作可以交换任意两行或任意两列,问能否使得右上角到左下角的对角线全是 1 1 1。
解法
我们发现任意交换过后,同一行的 1 1 1还在同一行,同一列的 1 1 1还在同一列。于是我们只要求出有没有 n n n个点,两两不同行,两两不同列。
于是就是求二分图最大匹配,若 G [ i ] [ j ] = = 1 G[i][j]==1 G[i][j]==1就在 i i i和 j j j之间建一条边,边的含义就是选了第 i i i行和第 j j j列。
#include<bits/stdc++.h>
#define ll long long
#define N 215
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define lowbit(i) ((i)&(-i))
using namespace std;
bool G[N][N],used[N];
int t,n,lk[N];
bool dfs(int u){
for(int i = 1;i <= n;++i){
if(!used[i]&&G[u][i]){
used[i] = 1;
if(!lk[i]||dfs(lk[i])){
lk[i] = u;
return 1;
}
}
}
return 0;
}
bool solve(){
for(int i = 1;i <= n;++i){
memset(used,0,sizeof(used));
if(dfs(i)==0) return 0;
}
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
ios::sync_with_stdio(0);
cin.tie(0);
cin >> t;
while(t--){
cin >> n;
memset(lk,0,sizeof(lk));
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
cin >> G[i][j];
if(solve()) puts("Yes");
else puts("No");
}
return 0;
}