函数与极限


思维导图

在这里插入图片描述


**

一、函数

**

1.函数:自变量与因变量存在唯一的确定关系
2.基本初等函数:指数函数,对数函数,幂函数,三角函数,反三角函数
3.初等函数:初等函数是由常数(基本初等函数)经过四则运算(复合运算)而成的式子
4.初等性质:
4.1 奇偶性:奇函数f(-x)=-f(x)定义域关于原点对称
偶函数:f(-x)=f(x)
4.2单调性:单调递增,单调递减
4.3有界性:有界:存在M>0,对任意的x∈D,有|f(x)|≤M,则称f(x)有界
有上界:存在M>0,对任意的x∈D,有f(x)≥M,则称f(x)有界有上界
有下界:存在M>0,对任意的x∈D,有f(x)≤M,则称f(x)有界有下界
4.4周期性:f(x+T)=f(x),f(x)为周期函数

**

二、数列极限、函数极限理解与定义

**

1.数列极限:给定一个数。如果用ε用来描述给定值与数列的接近程度,那么当精确度不断提高,如果在数列中始终找的一项能符合(匹配)这个精确度,就可以说这个数列无限地接近于这个数,那么这个数列的极限就是这个数,也就是说数列就收敛于这个数。
1.2 ε-N定义:设{an}为数列,A为常数,对任意的ε>0,存在N>0,当n>N时,有|an-A|<ε,则lim(n->∞)an=A或
an->A(n->∞)
2.函数极限:
2.1自变量趋近于有限值的极限:
2.1.1如果用ε用来描述给定值与函数的接近程度。函数上一点x0,用δ来表示满足这个精确度,即函数上一点x与x0的距离。满足这个距离的x可以是在x0左边,也可以是从x0右边。如果x0每一个满足与之对应的精确度的x在x0的左侧,则每一个精确度对应一个δ,f(x)在x0关于δ的每一个左去心领域内都满足与之对应的精确度,则称f(x)在x0这个点存在左极限。如果x0每一个满足与之对应的精确度的x在x0的右侧,则每一个精确度对应一个δ,f(x)在x0关于δ的每一个右去心领域内都满足与之对应的精确度,因为精确度无限高时可以把接近与等于划等号,所以则称f(x)在x0这个点存在右极限。
如果x0每一个满足与之对应的精确度的x在x0左右两侧,则每一个精确度对应一个δ,f(x)在x0关于δ的每一个去心领域内都满足与之对应的精确度,因为精确度无限高时可以把接近与等于划等号,则称f(x)在x0这个点存在极限,也就是说函数在一个点的左右极限都存在才能说这个点的极限存在。
2.1.2给定一个数,如果函数f(x)在x0(有定义)和给定值的接近程度ε,即精确度,在精确度不断提高下(向给定值接近),始终都能在x0左右两侧找到符合这个精确度的点(对称),假设找到时的点x与x0的距离相差为δ,x0左右两侧的这两个点之间的区间就是关于x0的去心领域(x0-δ,x0+δ),函数在这个区间上所有点的值与给定的数之间始终符合每一个与之对应且不断提高的精确度,那么这个给定的值就是函数的极限,也可以说函数收敛于这个数。如果函数上的一个点x0,在精确度不断提高下(向给定的值接近),函数只能在x0左侧(右侧)找到符合这个精确度的点,那么其所对应的区间,即x0的左去心邻域(右去心邻域),这个区间上所有的点与给定值之间都满足与之对应的精确度,则该数是函数的左极限(右极限)。
2.1.3 ε-δ定义:任意的ε>0,存在与之对应的δ,当0<|x-a|<δ时,|f(x)-A|<ε,将f(x)当x->a时以A为极限记为lim(x->a)f(x)=A或f(x)->A(x->a)
2.2 自变量趋近于∞时的极限:
2.2.1给定一个数,函数上所有点的函数值相较于给定值一一对应一个精确度(相减),在确定了精确度的情况下,函数上的总能找到一个点,在这个点的外侧区间上(|x|>X),函数上的所有点的值与这个给定的数之间符合这个精确度,那么当这个精确度无限大时,函数在相应的区间上的值就基本等于给定值了,就可以说在趋近于∞时这个给定的值就是函数的极限。如果函数在找满足精确度的区间时只能在x轴左侧找到,则称x->-∞的极限为这个给定的值,如果函数在找满足精确度的区间时只能在x轴右侧找到,则称x->+∞的极限为这个给定的值,只有函数在找满足精确度的区间时能同时在x轴左侧右侧找到(均能找到),则称x->∞的极限为这个给定的值,也就是说函数如果在x->∞时存在极限必须满足x->-∞和x->+∞时均存在极限。
2.2.2ε-X定义:对任意ε>0,存在X>0,当|x|>X时,|f(x)-A|<ε,则lim(x->∞)f(x)=A
对任意ε>0,存在X>0,当x>X时,|f(x)-A|<ε,
则lim(x->+∞)f(x)=A
对任意ε>0,存在X>0,当x<X时,|f(x)-A|<ε,
则lim(x->-∞)f(x)=A
**

三、数列、函数极限的性质

**

1.数列:
1.1.唯一性:数列收敛则极限唯一
1.2.有界性:数列收敛则必有界
1.3.保号性:数列xn的极限如果趋近于a,且a>0(a<0)存在正整数N(项),当n>N时都有xn>0(xn<0)
如果xn从某项起有xn≥0(xn≤0),且xn的极限为a,则a≥0(a≤0)
1.4.收敛数列与其子列的关系:数列收敛于一个数,那么它的所有的子列均收敛于这个数
2.函数
2.1.唯一性:函数在一个点极限若存在则唯一
2.2.局部有界性:若函数在一个点的极限等于A,则存在常数M>0和δ>0,使得0<|x-x0|<δ时,|f(x)|≤M
2.3.局部保号性:若函数在一个点的极限等于A,且A>0(A<0),则存在常数δ>0,使得当0<|x-x0|<δ时,有f(x)>0(f(x)<0)
若在x0的去心邻域内f(x)≥0(f(x)≤0),且f(x)在x0的极限为A,那么A≥0(A≤0)
**

四、无穷小无穷大的理解与性质

**

1.无穷小:自变量趋近于有限值的极限或自变量趋近于∞时的极限为0时称函数f(x)为趋近于有限值(∞)时的无穷小
2.无穷大:x->x0或x->∞时,函数在这个点上的值的绝对值(保证非负)|f(x)|可以大于给定的任意的数。
3.函数有极限A的充要条件是 f(x)=A+α,其中α是无穷小
4.无穷大的倒数为无穷小,无穷小的倒数为无穷大(f(x)≠0)
5.0是无穷小但无穷小不一定是0
6.α为无穷小,其是否为无穷小与自变量的趋向有关
7.性质:
7.1 α->0,β->0(x->x0)则α±β->0(x->x0)
7.2 α->0,则kα->0(x->x0)
7.3 函数有极限A的充要条件是 f(x)=A+α,其中α是无穷小
7.4 α->0,β->0(x->x0)则αβ->0(x->x0)
7.5 有界函数与无穷小相乘还是无穷小

**

五、极限的运算法则

**

1.两个无穷小的和是无穷小
有限个无穷小之和也是无穷小
2.有界函数与无穷小的乘积是无穷小
常数与无穷小的乘积是无穷小
有限个无穷小的乘积是无穷小
3.limf(x)=A,limg(x)=B,则
3.1 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
3.2 lim[f(x)g(x)]=limf(x)limg(x)=AB
3.3 lim(f(x)/g(x))=limf(x)/limg(x)=A/B(B≠0)
3.4 limf(x)存在,lim[c(f(x)]=climf(x)
lim[f(x)]n=[limf(x)]n
3.5 数列{xn},{yn}极限分别为A,B则满足加减,乘,除(被除)时可作为一个整体求极限
3.6 φ(x)≥ψ(x),且limφ(x)=A,limψ(x)=B,则A≥B
3.7 复合函数极限运算法则,复合函数的极限值等于被复合函数在一个点的值作为自变量得到的复合函数的值(这个点连续)

**

六、极限存在准则、两个重要极限

**

1.夹逼准则(定理)
1.1 数列:从某项起有yn≤xn≤zn,且{yn},{zn}的极限都为A,则{xn}的极限也为A
1.2 函数:函数f(x)在图像上一点关于r的去心领域内(|x|>M)有g(x)≤f(x)≤h(x)且g(x),h(x)在该点(趋近于∞)时极限都为A,则f(x)在该点(趋近于∞)时极限也为A
2.单调有界数列必有极限
函数f(x)在x0的某个左邻域(右邻域)内单调并且有界,则f(x)在x0的左极限(右极限必定存在)
3.两个重要极限
Lim(x->0)sinx/x=1;lim(Δx->0)sin(Δx)/Δx=1
Lim(x->∞)(1+1/x))^x=e; lim(Δx->0)(1+Δx)^Δx=e

**

七、无穷小的比较

**

1.高阶无穷小limβ/α=0,记作β=O(α)
2.低阶无穷小limβ/α=∞
3.同阶无穷小limβ/α=c≠0
4.k阶无穷小limβ/(α^k)=c≠0
5.等价无穷小limβ/α=1记作 α~β
6.β与α等价无穷小充要条件是β=α+O(α
7.αa,βb,lim(β/α)存在,则lim(β/α)=lim(b/a)
8.常用等价无穷小
sinx~x
arctanx~x
a^x-1=xlna
(1+x)^n-1=nx
arcsinx~x
ln(1+x)~x
1- cosx=(x^2)/2
tanx~x
e^x-1=x
tanx-sinx~(x^3)/2

**

八、函数的连续性与间断点

**

1.函数在一个点连续,则lim(x->x0)=f(x0)或f(x0-0)=f(x0+0)=f(x0)
2.函数在闭区间[a,b]上有定义,如果f(x)在(a,b)内处处连续,且f(a)=f(a+0),f(b)=f(b-0)则f(x)在[a,b]上连续,记为f(x)∈c[a,b]
3.间断点
2.1 间断 在一个点极限值不等于函数值
2.2第一类间断点
左右极限都存在但是不等于函数值,当左右极限相等时该点称为f(x)的可去间断点,当左右极限不等时称该点为f(x)的跳跃间断点
2.3 左右极限至少一个不存在时称该点为f(x)的第二类间断点

**

九、连续函数的运算与初等函数的连续性

**
1.四则:
如果f(x),g(x)在x=x0处处连续,则
1.1f(x)±g(x)在x=x0连续
1.2f(x)g(x)在x=x0连续
3.f(x)/g(x)在x=x0(g(x)≠0)连续
2.复合:
y=f(u),u=φ(x),φ(x)≠a;若lim(u->a)f(u)=A,lim(x->x0)φ(x)=a,则lim(x->x0)f[φ(x)]=A
y=f(u),u=φ(x),φ(x)≠a;若lim(u->a)f(u)=f(a),lim(x->x0)φ(x)=f(a),则lim(x->x0)f[φ(x)]=f(a)
3.初等函数是由常数(基本初等函数)经过四则运算(复合运算)而成的式子
3.1基本初等函数在其定义域内连续
3.2初等函数在其定义域内连续
**

十、闭区间上连续函数的性质

**
1.最值定理:设函数f(x)∈[a,b],则f(x)在[a,b]上能取到最小值m最大值M(只有充分性)
2.最值定理:设函数f(x)∈[a,b],则存在k>0,使任意x∈[a,b],有|f(x)|≤k
3.零点定理:设函数f(x)∈[a,b],若f(a)f(b)<0,则存在c∈(a,b),使得f©=0(开区间)
4.介值定理:设函数f(x)∈[a,b],则任意的η∈[m,M],存在ξ∈[a,b],使f(ξ)=η(介于m,M之间的值,f(x)均可以取到)
5.证明题中f(x)∈[a,b],存在c∈(a,b)想到零点定理
f(x)∈[a,b],存在ξ∈[a,b]或函数值之和想到介值定理

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值