TensorFlow编程基础

TensorFlow编程基础

1.编程模型

Tensorflow:
Tensor(张量)flow(流)
张量从图像的一段流动到另一端的计算过程

了解模型的运行机制

定义和运行相分离

在操作层面可以抽象成两种:模型构建和模型运行

模型构建中的概念:

名称含义
张量(tensor)数据,即某一类型的多维数组
变量(Variable)常用于定义模型中的参数
占位符(placeholder)输入变量的载体。也可以理解成定义函数时的参数
图中的节点操作(operation,OP)即一个OP获得0个或者多个tensor,执行计算,输出额外的0个或多个tensor
  • 一个表示一个计算任务
  • 在模型运行的环节中,会在会话session中被启动
  • session将图的OP分发到如CPU或GPU之类的设备上,同时提供执行OP的方法。这些方法执行后,将产生的tensor返回

在实际环境中,这种运行情况会有 种应用场景,分别是训练场景、测试场景与使用场景。在训练场景下图的运行方式与其他两种不同,具体介绍如下。

  • 训练场景 是实现模型从无到有的过程,通过对样本的学习训练,调整学习参数 ,形成最终的模型。其过程是将给定的样本和标签作为输入节点,通过大量的循环法代,将图中的正向运算(从输入的样本通过 OP 运算得到输出的方向〉得到的输出值,再进行反向运算(从输出到输入的方向〉,以更新模型中的学习参数,最终使模型产生的正向结果最大化地接近样本标签。这样就得到了一个可以拟合样本规律的模型。
  • 测试场景和使用场景:测试场景是利用图的正向运算得到的结果与真实值进行比较的差别;使用场景也是利用图的正向运算得到结果,并直接使用。所 二者的运算过程是一样的。对于该场景下的模型与正常编程用到的函数特别相似。在函数中 ,可以分为实参、形参、函数体与返回值。同样在模型中,实参就是输入的样本,形参就是占位符,运算过程就相当于函数体,得到的结果相当于返回值。

另外, session 与图的交互过程中还定义了以下两种数据的流向机制。

  • 注入机制( feed) 通过占位符向模式中传入数据。
  • 取回机制( fetch ):从模式中得到结果

例:编写Hello World 开始理解session的作用

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')  		# 定义一个常量
sess = tf.Session()                             # 建立一个session
print (sess.run(hello))                        	# 通过session里面的run来运行结果
sess.close()                                    # 关闭session

得到如下输出:

b'Hello, TensorFlow!'

例:演示with session的使用

使用 with session 方法建立 session ,并 session 中计算两个变量 。3 和 4的相加与相乘值

import tensorflow as tf
a = tf.constant(3)                     	# 定义常量3
b = tf.constant(4)                     	# 定义常量4
with tf.Session() as sess:           	# 建立session
    print ("相加: %i" % sess.run(a+b))
    print( "相乘: %i" % sess.run(a*b))

得到以下输出:

相加: 7
相乘: 12

例:演示注入机制 并使用注入机制获取节点

定义占位符,使用 feed 机制将具体数值。3 和 4 通过占位符传入,并进行相加和相乘运算。

import tensorflow as tf
a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)
add = tf.add(a, b)
mul = tf.multiply(a, b)                      #a与b相乘
with tf.Session() as sess:
    # Run every operation with variable input
    print ("相加: %i" % sess.run(add, feed_dict={a: 3, b: 4}))
    print ("相乘: %i" % sess.run(mul, feed_dict={a: 3, b: 4}))
    print (sess.run([mul, add], feed_dict = {a: 3, b: 4}))

得到以下输出:

相加: 7
相乘: 12
[12, 7]

标记的方法是:使用 tf.placeholder 为这些操作创建占位符,然后使用 feed_dict 把具体的值放到占位符里。

指定GPU运算

设置GPU使用资源

保存和载入模型的方法介绍

1. 保存模型

首先需要建立一个 saver, 然后在 session 中通过 saver 的 save 即可将模型保存起来。

# 各种构建模型的操作

saver = tf.train.Saver() # 生成saver
with tf.Session() as sess:
    sess.run(init)	# 初始化
    # 将数据丢进模型balabala
    # 训练完以后,使用saver.save来保存
    saver.save(sess, "save_path/file_name")
	# 如果file_name不存在,会自动创建
2. 载入模型

将模型保存好以后,载入也比较方便。在 session 中通 saver 的 restore() 函数会从指定的路径找到模型文件, 并覆盖到相关参数中。

saver = tf.train.Saver() # 生成saver

with tf.Session() as sess:
    # 参数可以不进行初始化,初始化的值也会被restore的值给覆盖掉
    sess.run(init)
    saver.restore(sess, "save_path/file_name")

例:线性回归模型的保存和载入

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 模拟数据
……
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.legend()
plt.show()

# 重置图
tf.reset_default_graph()

# 初始化等操作
……
display_step = 2
saver = tf.train.Saver() # 生成saver
savedir = "log/"

# 启动session
with tf.Session() as sess:
    sess.run(init)

    # Sess中的训练代码:
    print (" Finished!")
    saver.save(sess, savedir+"linermodel.cpkt")
    print ("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b))
    
    # 其他代码
    ……

运行代码会在代码的同级目录下log文件夹中生成几个文件

再重启一个session,并命名为sess2,在代码里通过saver的restore函数将模型载入

#重启一个session    
with tf.Session() as sess2:
    sess2.run(tf.global_variables_initializer())     
    saver.restore(sess2, savedir+"linermodel.cpkt")
    print ("x=0.2,z=", sess2.run(z, feed_dict={X: 0.2}))
3. 分析模型内容,演示模型的其他保存方法
模型内容

虽然模型己经保存了,但是仍然对我们不透明。下面通过编写代码将模型里的内容打印出来,看看到底保存了哪些东西,都是什么样的。

import tensorflow as tf
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
savedir = "log/"
print_tensors_in_checkpoint_file(savedir+"linermodel.cpkt", None, True)

W = tf.Variable(1.0, name="weight")
b = tf.Variable(2.0, name="bias")

# 放到一个字典里:
saver = tf.train.Saver({'weight': b, 'bias': W})

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    saver.save(sess, savedir+"linermodel.cpkt")

print_tensors_in_checkpoint_file(savedir+"linermodel.cpkt", None, True)

得到以下信息:

tensor_name:bias
[0.01919404]
tensor_name:weight
[2.03479218]

可以看到后面跟的就是创建变量名,接着的是它的数值。

保存模型的其他方法

前面的例子使用Saver的创建比较简单

其实tf.train.Saver函数里面还可以放参数来实现更高级的功能,可以指定存储变量名字的对应关系。

W = tf.Variable(1.0, name="weight")
b = tf.Variable(2.0, name="bias)

# 放到一个字典里
saver = tf.train.Saver({'weight': b, 'bias': W})

with tf.Session() as sess:
    tf.global_variables_initializer().run()
    saver.save(sess, savedir+"linermodel.cpkt")
                
print_tenssors_in_checkpoint_file(savedir+"linermodel.cpkt", None, Ture)

得到以下信息:

tensor_name:bias
1.0
tensor_name:weight
2.0

例子中, W值设为 1.0 , b 的值设为 2.0 。在创建 saver 时才将它们颠倒, 保存的模型打印出来之后可以看到, bias 变成了 1.0 ,而 weight 变成了 2.0

检查点(Checkpoint)

保存模型并不限于在训练之后,在训练之中也需要保存,因为 Tensorflow 训练模型时难免会出现中断的情况。我们自然希望能够将辛苦得到的中间参数保留下来,否则下次又要重新开始。

这种在训练中保存模型,习惯上称之为保存检查点。

例:为模型添加保存检查点

实例描述:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

plotdata = { "batchsize":[], "loss":[] }
def moving_average(a, w=10):
    if len(a) < w: 
        return a[:]    
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

#生成模拟数据
train_X = np.linspace(-1, 1, 100)
train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声
#图形显示
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.legend()
plt.show()


tf.reset_default_graph()

# 创建模型
# 占位符
X = tf.placeholder("float")
Y = tf.placeholder("float")
# 模型参数
W = tf.Variable(tf.random_normal([1]), name="weight")
b = tf.Variable(tf.zeros([1]), name="bias")
# 前向结构
z = tf.multiply(X, W)+ b

#反向优化
cost =tf.reduce_mean( tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent

# 初始化变量
init = tf.global_variables_initializer()
#参数设置
training_epochs = 20
display_step = 2
saver = tf.train.Saver(max_to_keep=1) # 生成saver,最多只保存一个检查点文件
savedir = "log/"
# 启动session
with tf.Session() as sess:
    sess.run(init)

    # Fit all training data
    for epoch in range(training_epochs):
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        #显示训练中的详细信息
        if epoch % display_step == 0:
            loss = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
            print ("Epoch:", epoch+1, "cost=", loss,"W=", sess.run(W), "b=", sess.run(b))
            if not (loss == "NA" ):
                plotdata["batchsize"].append(epoch)
                plotdata["loss"].append(loss)
            saver.save(sess, savedir+"linermodel.cpkt", global_step=epoch)
                
    print (" Finished!")
    
    print ("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b))
    #print ("cost:",cost.eval({X: train_X, Y: train_Y}))

    #图形显示
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()
    
    plotdata["avgloss"] = moving_average(plotdata["loss"])
    plt.figure(1)
    plt.subplot(211)
    plt.plot(plotdata["batchsize"], plotdata["avgloss"], 'b--')
    plt.xlabel('Minibatch number')
    plt.ylabel('Loss')
    plt.title('Minibatch run vs. Training loss')
     
    plt.show()

    
#重启一个session    
load_epoch=18    
with tf.Session() as sess2:
    sess2.run(tf.global_variables_initializer())     
    saver.restore(sess2, savedir+"linermodel.cpkt-" + str(load_epoch))
    print ("x=0.2,z=", sess2.run(z, feed_dict={X: 0.2}))
    
with tf.Session() as sess3:
    sess3.run(tf.global_variables_initializer()) 
    ckpt = tf.train.get_checkpoint_state(savedir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess3, ckpt.model_checkpoint_path)
        print ("x=0.2,z=", sess3.run(z, feed_dict={X: 0.2}))

with tf.Session() as sess4:
    sess4.run(tf.global_variables_initializer()) 
    kpt = tf.train.latest_checkpoint(savedir)
    if kpt!=None:
        saver.restore(sess4, kpt) 
        print ("x=0.2,z=", sess4.run(z, feed_dict={X: 0.2}))
实例:更简便的保存检查点

本例中介绍另一种更简便地保存检查点功能代码的方法一一tf.train.MonitoredTrainingSession 函数

该函数可以直接实现保存及载入检查点模型的文件。

本例中不是按照循环步数来保存,而是按照训练时间来保存的

通过指定save_checkpoint_secs参数的具体秒数,来设置每训练多久保存一次检查点

import tensorflow as tf
tf.reset_default_graph()
global_step = tf.train.get_or_create_global_step()
step = tf.assign_add(global_step, 1)

with tf.train.MonitoredTrainingSession(checkpoint_dir='log/checkpoints',save_checkpoint_secs  = 2) as sess:
    print(sess.run([global_step]))	# 必须使用 global_step 变量
    while not sess.should_stop():
        i = sess.run( step)
        print( i)

运行代码,得到如下输出:

252 12851 
252 12852 
252 12853 
252 12854 
252 12855 
252 12856

将程序停止,可以看到 log/checkpoints 下面生成了检查点文件 model.ckpt-8968 meta。

再次运行代码,输出如下:

252 8969 
252 8970 
252 8971

可见,程序自动载入检查点文件是从第 969 次开始运行的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值