MajicTryOn(基于wanvideo的虚拟试穿项目)

网络结构

 Attention模块详解

        左边服装通过qwen2.5-VL-7B来生成详细的服装描述;线条提取器产生相应的线条map;garment和line map通过vae转换为潜在空间特征,然后分别经过patchfier,最后通过zero proj得到Garment Tokens和Line Tokens;右边是dit中的attention block模块(只包括cross attention部分),首先是Input Tokens 经过线性层和经过clip的图像tokens做交叉注意力计算,Text Tokens (文本通过umt5 文本编码器得到)经过线性层和经过线性层的Input Tokens 进行交叉注意力计算,后面将经过交叉注意力计算的文本特征和图像特征相加在一起;FGCA也同样是交叉注意力,只不过他们是将Line Tokens和Garment Tokens经过Linear得到的K,V分别堆叠在一起后再和Input Tokens进行叉注意力计算。最后将所有的经过注意力计算的特征相加在一起。需要注意的是一个轻量化Adapter模块:自适应服装特征分布 .

训练目标函数

 

 引入了一个mask区域loss计算,加强需要生成的衣服区域的生成保真度。

 数据和评估指标

 数据

VITON-HD

DressCode

ViViD

 评估指标

 SSIM, LPIPS, FID, and KID;前两个主要专注于两个图像像素的相似度,后两个主要专注于两个图像像素分布的相似度

 实现细节

预训练模型Wan2.1-Fun-14B-Control

第一阶段使用分辨率256-512的分辨率训练,第二阶段继续训练,在512-1024分辨率上

训练视频49帧,batch_size为2。第一阶段15k步数,第二阶段10K步数。

优化器 AdamW,学习率1e-5

机器配置8 NVIDIA H20 (96GB) GPUs

 

参考论文

https://arxiv.org/pdf/2505.21325

目前代码未开源

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资料加载中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值