1. 题目大意
给你一个整数数组nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值 。
2. 思路分析
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
单看这个题目,不难想出暴力的解法,但是在获取滑动窗口的的最大值的时候,需要进行线性遍历,时间复杂度为O(k)这会在提交的时候超时。解决这道题本质上是把获取滑动窗口内最大值的复杂度从O(k)
降低到O(1)
。
窗口本质可以看作是双端队列,这里需要用到单调队列, 也就是队列中的元素大小是递减的。遍历数组时,每轮保证单调队列deque满足以下条件:
- 有且只有滑动窗口内的元素
- 当队列增加一个元素的时候,需要删除开始队列的元素,保持和滑动窗口大小相等
- 把最大值放在队列开始的位置。对于
nums[i]
,如果比deque[-1]
(队列尾部元素)还小则直接追加,如果比队列尾部元素还大则一直删除比nums[i]
小的,直到队列中没有比nums[i
更小的元素。
综上所述,算法流程如下:
- 如果队列中有元素,则删除
deque
内所有<nums[j]
的元素,以保持deque
递减。如果nums[i]
在窗口内已经是最大的,那么它前面的元素在以后也不会比当前元素更大,不会被考虑,直接删除。 - 如果当前队列中的元素已经满足窗口大小时,当加入新的元素,需要删除队列中的开头元素,保持和窗口大小一致
- 在开始遍历的前几轮,当还不能构成窗口大小时,则不做结果保存,只有当
i>=k-1
时才开始记录。
3. 代码示例
Java版本
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int [] res = new int [n-k+1];
int index = 0;
Deque<Integer> d = new LinkedList<>();
for(int i=0; i<n;i++){
// 删除小于当前值的队列元素
while(!d.isEmpty() && nums[i] >= nums[d.peekLast()]){
d.pollLast();
}
// 添加当前元素的下标
d.addLast(i);
// 当队列中元素数量满足窗口的大小时,删除队列中第一个元素
if(i-d.peekFirst() >= k){
d.pollFirst();
}
// 当窗口形成以后,不断将结果保存
if(i+1>=k){
res[index++] = nums[d.peekFirst()];
}
}
return res;
}
}
Python版本
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
res = []
q = deque()
for i, x in enumerate(nums):
# 删除小于当前值的队列元素
while q and nums[q[-1]] <= x:
q.pop()
# 添加当前元素的下标
q.append(i)
# 当队列中元素数量满足窗口的大小时,删除队列中第一个元素
if i - q[0] >= k:
q.popleft()
# 当窗口形成以后,不断将结果保存
if i+1 >= k:
res.append(nums[q[0]])
return res