这一章内容比较简单(因为只学了一小部分),估计也就考一道关于欧拉判别条件的应用(与快速平方法一起)
设 m 是正整数。若同余式x2≡a (mod m ) 且(a, m)=1有解,则 a 叫做模 m 的平方剩余(或二次剩余);
否则,a 叫做模 m 的平方非剩余(或二次非剩余)。
是否有解,就看b2-4ac+m*k是否为平方和,但是通常很难用这种方法判断,尤其数很大的时候,所以就有了欧拉判别条件:
设p是奇素数,(a,p)=1,则
a是模p的平方剩余的充分必要条件是
a(p-1)/2=1(mod p)
a是模p的平方非剩余的充分必要条件是
a(p-1)/2=-1(mod p)
并且当a是奇素数p的平方剩余时,同余式恰有两解
最后两页感觉不会考,跳了