信息安全数学基础(四):二次同余式与平方剩余

这一章内容比较简单(因为只学了一小部分),估计也就考一道关于欧拉判别条件的应用(与快速平方法一起)
设 m 是正整数。若同余式x2≡a (mod m ) 且(a, m)=1有解,则 a 叫做模 m 的平方剩余(或二次剩余);
否则,a 叫做模 m 的平方非剩余(或二次非剩余)。
是否有解,就看b2-4ac+m*k是否为平方和,但是通常很难用这种方法判断,尤其数很大的时候,所以就有了欧拉判别条件:
设p是奇素数,(a,p)=1,则
a是模p的平方剩余的充分必要条件是
a(p-1)/2=1(mod p)
a是模p的平方非剩余的充分必要条件是
a(p-1)/2=-1(mod p)
并且当a是奇素数p的平方剩余时,同余式恰有两解

在这里插入图片描述
最后两页感觉不会考,跳了

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值