图像处理之《基于端到端哈希生成模型的鲁棒无覆盖图像隐写》论文精读

一、文章摘要

近年来,无覆盖隐写算法因其完全抵抗隐写分析算法的能力而引起了越来越多的研究关注。然而,现有的算法在面对几何攻击和非几何攻击时,无法达到同样的鲁棒性平衡。此外,现有的方法大多需要在隐写图像的同时传输一些辅助信息,这增加了隐写信息的成本。提出了一种基于哈希生成模型的鲁棒无覆盖图像隐写算法。与现有方法不同的是,哈希序列是由端到端的CNN模型生成的,输入是原始图像,输出是相应的哈希序列。因此,隐藏秘密信息时不需要传输辅助信息。此外,还引入了注意力机制和对抗训练来提高模型的鲁棒性。损失函数被重新设计以适应这些操作。最后,通过建立索引结构来提高映射效率。实验结果表明,与现有的无覆盖图像隐写算法相比,该方法具有更好的鲁棒性和安全性。
在这里插入图片描述

二、动机

2.1 抵抗几何和非几何攻击的不平衡

如第1节所述,现有的无覆盖图像隐写算法通常需要两个单独的步骤来生成哈希序列,这使得很难对生成的哈希序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值