多层线性模型在R上的实现
背景介绍
刘红云老师《高级心里统计》中的第十三章和第十四章介绍了多层线性模型,并且给出了多层线性模型应用案例及其操作,使用的统计软件有HLM、SPSS和Mplus,没有使用R进行分析,因此,本文档主要介绍R实现多层线性模型。
目前了解到R语言中经常使用的估计HLM包有lme4和nlme,看到大佬们在介绍时使用的比较多的是lme4,所以在学习时也采用了lme4去复现了刘红云老师的案例。
模型1+代码
library(tidyverse)
library(lme4)
library(nlme) #提供数据
MathAchieve
MathAchSchool
模型1:零模型
第 一 水 平 : M a t h a c h = β 0 + r 第一水平:Mathach = \beta_0+r 第一水平:Mathach=β0+r
第 二 水 平 : β 0 = γ 00 + μ 0 第二水平:\beta_0 = \gamma_{00}+\mu_0 第二水平:β0=γ00+μ0
其中,该模型中 γ 00 \gamma_{00} γ00表示学生数学成绩的均值
model0 <- lmer(MathAch~(1|School),data=MathAchieve)
summary(model0)
模型2:第一水平加入SES的随机系数回归模型
第 一 水 平 : M a t h a c h = β 0 + β 1 ( S E S ) + r 第一水平:Mathach=\beta_0+\beta_1(SES)+r 第一水平:Mathach=β0<