题目描述
任何一个正整数都可以用2的幂次方表示。例如
137=2^7+2^3+2^0
同时约定方次用括号来表示,即a^b可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:
7= 2^2+2+2^0 (2^1用2表示),并且 3=2+2^0
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=2^{10} +2^8 +2^5 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
一个正整数n(n≤20000)。
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
虽然在落谷上这只是一个普及难度的题,但是让我对递归以及分治有了更深的理解,哈哈哈哈哈,
上代码吧
#include<cstdio>
#include<vector>
#include<cmath>
using namespace std;
void print(int n)
{
int i=14;
vector<int> v;
while(n>0)
{
if(n-pow(2,i)>=0)
{
n=n-pow(2,i);
v.push_back(i);
i--;
}
else
i--;
}
for(int i=0;i<v.size();i++)
{
if(v[i]==1)
{
if(i!=v.size()-1)
printf("2+");
if(i==v.size()-1)
printf("2");
}
else if(v[i]==0)
{
if(i!=v.size()-1)
printf("2(0)+");
if(i==v.size()-1)
printf("2(0)");
}
else
{
if(i!=v.size()-1)
{
printf("2(");
print(v[i]);
printf(")+");
}
if(i==v.size()-1)
{
printf("2(");
print(v[i]);
printf(")");
}
}
}
}
int main()
{
int n;
scanf("%d",&n);
print(n);
return 0;
}