Acwing 借教室(二分+差分)

该博客主要讨论了一种利用二分查找和差分数组的方法来解决订单分配问题。通过判断在一定数量的订单下是否能成功分配,找到第一个无法分配的订单位置。代码中定义了检查函数`check`,并使用二分查找在1到m的范围内确定临界点。当所有订单都能分配时返回0,否则输出第一个不能分配的订单位置。
摘要由CSDN通过智能技术生成

只需要找到第一个不能分配的订单所以只需要二分一下是第几个订单不能分配就可以,判定的过程用差分数组。

#include <bits/stdc++.h>
#define IO                       \
    ios::sync_with_stdio(false); \
    // cout.tie(0);
#define lson(x) node << 1, start, mid
#define rson(x) node << 1 | 1, mid + 1, end

using namespace std;
// int dis[8][2] = {0, 1, 1, 0, 0, -1, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1};
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int maxn = 5e5 + 10;
const int maxm = 1e4 + 10;
const LL mod = 1e9 + 7;
const double eps = 1e-8;
const double pi = acos(-1);
// int dis[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};
// int m[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

LL n, m;
LL r[maxn];
LL d[maxn], s[maxn], t[maxn];
LL c[maxn];
bool check(int mid)
{
    for (int i = 1; i <= n; i++)
        c[i] = r[i] - r[i - 1];
    for (int i = 1; i <= mid; i++)
    {
        c[s[i]] -= d[i];
        c[t[i] + 1] += d[i];
    }
    for (int i = 1; i <= n; i++)
    {
        c[i] += c[i - 1];
        if (c[i] < 0)
            return false;
    }
    return true;
}
int main()
{
#ifdef WXY
    freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
#endif
    IO;
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> r[i];
    for (int i = 1; i <= m; i++)
    {
        cin >> d[i] >> s[i] >> t[i];
    }
    if (check(m) == true)
    {
        return cout << 0, 0;
    }
    LL L = 1, R = m;
    LL ans = 1;
    while (L <= R)
    {
        LL mid = L + R >> 1;
        if (check(mid))
        {
            ans = mid + 1;
            L = mid + 1;
        }
        else
            R = mid - 1;
    }

    cout << -1 << "\n";
    cout << ans;
    return 0;
}

二维差分是一种常用的数据结构和算法巧,用于高效地处理二维矩阵区间的更新和查询操作。它可以在O(1)的时间复杂度内完成区间的更新和查询操作,相比传统的暴力遍历方法,具有更高的效率。 二维差分的基本思想是将原始矩阵转化为一个差分矩阵,差分矩阵中的每个元素表示原始矩阵中相邻元素之间的差值。通过对差分矩阵进行预处理,可以实现对原始矩阵区间的更新和查询操作。 具体来说,二维差分的操作包括两个步骤:预处理和操作。预处理阶段,需要根据原始矩阵构建差分矩阵;操作阶段,可以通过对差分矩阵的更新来实现对原始矩阵区间的更新,同时可以通过对差分矩阵的求和来实现对原始矩阵区间的查询。 下面是二维差分的基本操作: 1. 构建差分矩阵:对于原始矩阵A,构建一个差分矩阵B,其中B[i][j] = A[i][j] - A[i-1][j] - A[i][j-1] + A[i-1][j-1]。 2. 区间更新:对于原始矩阵A的一个区间[left, right] x [top, bottom],将差分矩阵B的相应位置进行更新,即B[left][top] += val,B[right+1][top] -= val,B[left][bottom+1] -= val,B[right+1][bottom+1] += val。 3. 区间查询:对于原始矩阵A的一个区间[left, right] x [top, bottom],通过求和差分矩阵B的相应位置得到区间和,即sum = B[right][bottom] - B[left-1][bottom] - B[right][top-1] + B[left-1][top-1]。 二维差分可以广泛应用于各种算法问题,例如矩阵区间求和、矩阵区间更新等。它的时间复杂度较低,适用于处理大规模的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值