给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。
请你将两个数相加,并以相同形式返回一个表示和的链表。
你可以假设除了数字 0 之外,这两个数都不会以 0 开头。
解题:
因为他那个是逆序的,所以直接从两个链表的头节点开始逐位相加,并且保持一个进位值的记录,如果有进位就加上去进位。如果链表的某一位为空,就用 0 代替进行加法操作。把每次加法结果的个位数存入新的链表中,进位则继续存入下一位。当所有节点处理完后,如果进位为 1,则在链表最后再添加一个节点。这个可以用递归来做,也可以不用递归来做,使用迭代的方法做。
递归:
感觉这样结果也不错!
class Solution:
def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
if not l1:
return l2
if not l2:
return l1
#l3=ListNode(0)
l1.val = l1.val+l2.val
if l1.val >=10:
l1.next = self.addTwoNumbers(ListNode(l1.val // 10), l1.next)
# 以l1为基准,遇到需要进位则递归为l1进位
l1.val = l1.val % 10
l1.next = self.addTwoNumbers(l1.next, l2.next)
return l1
狄俄代:
def addTwoNumbers(l1, l2):
dummy_head = ListNode()
current = dummy_head
carry = 0
while l1 or l2:
x = l1.val if l1 else 0
y = l2.val if l2 else 0
total = x + y + carry
carry = total // 10
current.next = ListNode(total % 10)
current = current.next
if l1:
l1 = l1.next
if l2:
l2 = l2.next
# 如果最后还有进位,需要再添加一个节点
if carry > 0:
current.next = ListNode(carry)
# 返回结果链表
return dummy_head.next
实际上,迭代方法和递归方法的时间复杂度是相同的,都是 O(max(m, n)),其中 m 和 n 分别是两个链表的长度。两种方法都需要遍历两个链表中的每个节点一次,因此时间复杂度是一样的。
区别在于空间复杂度!
迭代方法的空间复杂度为 O(1)(不包括返回结果的链表)。迭代方法只使用了固定数量的额外空间,比如 carry 和一些指针变量,因此它的空间复杂度是常数级的。
递归方法的空间复杂度为 O(max(m, n))。虽然递归也只处理链表中的每个节点一次,但是由于递归调用函数本身会消耗栈空间,每次递归调用会占用一层栈,栈的深度等于两个链表的最大长度。因此递归方法的空间复杂度是 O(max(m, n)),即与链表的长度有关。
递归方法:每次递归调用时,都会创建一个新的函数调用帧,保存当前的局部变量和执行位置。当链表长度较大时,递归调用会使栈帧消耗较多内存,最终导致更高的空间复杂度。比如,两个链表的长度总和为 k,递归的调用栈深度就是 k,因此空间复杂度为 O(k)。
迭代方法:只需使用一组指针遍历链表,不需要保存函数调用帧,所有的操作都在同一个栈帧中进行,因此只占用常数级别的内存。无论链表有多长,空间消耗保持固定。