代码随想录算法训练营第39天| 62.不同路径、63. 不同路径 II

62.不同路径

完成

思路:

dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径;递推公式为dp[i][j] = dp[i-1][j] + dp[i][j-1];初始化时将边界赋1即可

代码

class Solution {
    // dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

63. 不同路径 II

完成

思路:

本题与上题相比,在路径上多了障碍,有障碍的路径dp值赋为0即可。
另外在初始化时要注意,边界上有障碍不仅会影响本格,后面所有的边界格子也都是0。

代码

class Solution {
    // dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            // 边界上有障碍,不仅本格是0,后面的边界格子也会是0
            if(obstacleGrid[i][0] == 1) break;
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            if(obstacleGrid[0][i] == 1) break;
            dp[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值