62.不同路径
完成
思路:
dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径;递推公式为dp[i][j] = dp[i-1][j] + dp[i][j-1]
;初始化时将边界赋1即可
代码
class Solution {
// dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
63. 不同路径 II
完成
思路:
本题与上题相比,在路径上多了障碍,有障碍的路径dp值赋为0即可。
另外在初始化时要注意,边界上有障碍不仅会影响本格,后面所有的边界格子也都是0。
代码
class Solution {
// dp[i][j]代表机器人到达坐标为(i,j)网格有多少种路径
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
// 边界上有障碍,不仅本格是0,后面的边界格子也会是0
if(obstacleGrid[i][0] == 1) break;
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
if(obstacleGrid[0][i] == 1) break;
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}