扫描2~√N的每个数i,若i能整除N,那么从N中除掉所有的因子i,同时累计被除去的i的个数。
因为一个合数的因子一定在扫描到这个合数之前就从N中被除去了,因此扫描到能整除N的数一定是质数。
需要注意的是,若最终N没有被[2,√N]的数整除,则N为质数,直接累计就可以了。
综上,质因数分解的时间复杂度为O(√N)。
//其中p为底数,num为对应的指数
void Divide(){
cnt=0;
for(int i=2;i<=sqrt(n);i++){
if(n%i==0){
p[++cnt]=i;
while(n%i==0){
num[cnt]++;
n/=i;
}
}
}
if(n>1){
p[++cnt]=n;num[cnt]=1;
}
}