模板--质因数分解

扫描2~√N的每个数i,若i能整除N,那么从N中除掉所有的因子i,同时累计被除去的i的个数。
因为一个合数的因子一定在扫描到这个合数之前就从N中被除去了,因此扫描到能整除N的数一定是质数。
需要注意的是,若最终N没有被[2,√N]的数整除,则N为质数,直接累计就可以了。
综上,质因数分解的时间复杂度为O(√N)。

//其中p为底数,num为对应的指数 
void Divide(){
    cnt=0;
    for(int i=2;i<=sqrt(n);i++){
        if(n%i==0){
            p[++cnt]=i;
            while(n%i==0){
                num[cnt]++;
                n/=i;
                }
           }
       }
    if(n>1){
        p[++cnt]=n;num[cnt]=1;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值