有一颗数,树的边权为1,树上的有些节点有大学,现在要把这些大学配对,每对大学之间都要链接线缆,问最多要链接多长的线缆。

Treeland is a country in which there are n towns connected by n - 1 two-way road such that it’s possible to get from any town to any other town.
In Treeland there are 2k universities which are located in different towns.
Recently, the president signed the decree to connect universities by high-speed network.The Ministry of Education understood the decree in its own way and decided that it was enough to connect each university with another one by using a cable. Formally, the decree will be done!
To have the maximum sum in the budget, the Ministry decided to divide universities into pairs so that the total length of the required cable will be maximum. In other words, the total distance between universities in k pairs should be as large as possible.
Help the Ministry to find the maximum total distance. Of course, each university should be present in only one pair. Consider that all roads have the same length which is equal to 1.

    Input
    The first line of the input contains two integers n and k (2 ≤ n ≤ 200 000, 1 ≤ k ≤ n / 2) — the number of towns in Treeland and the number of university pairs. Consider that towns are numbered from 1 to n. 

The second line contains 2k distinct integers u1, u2, …, u2k (1 ≤ ui ≤ n) — indices of towns in which universities are located.
The next n - 1 line contains the description of roads. Each line contains the pair of integers xj and yj (1 ≤ xj, yj ≤ n), which means that the j-th road connects towns xj and yj. All of them are two-way roads. You can move from any town to any other using only these roads.

    Output
    Print the maximum possible sum of distances in the division of universities into k pairs.

    Examples

Input

7 2
1 5 6 2
1 3
3 2
4 5
3 7
4 3
4 6

Output

6

Input

9 3
3 2 1 6 5 9
8 9
3 2
2 7
3 4
7 6
4 5
2 1
2 8

Output

9

    Note
    The figure below shows one of possible division into pairs in the first test. If you connect universities number 1 and 6 (marked in red) and universities number 2 and 5 (marked in blue) by using the cable, the total distance will equal 6 which will be the maximum sum in this example. 
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=6005;
const int inf=0x7fffffff;
int dp[maxn],n,r[maxn];//dp[i]i+1长度的结尾最小人口数,n 城市数,r[i] 第i个城市的人口数
int first[maxn],nxt[2*maxn],to[2*maxn],len[maxn];//邻接表相关
int ans;
void dfs(int s,int f)
{
    int pos=lower_bound(dp,dp+n,r[s])-dp;//找到一个比s人口值小的dp[]值
    int tmp=dp[pos];//保存这个dp值
    ans=max(pos+1,ans);
    dp[pos]=min(dp[pos],r[s]);//更新dp
    for(int i=first[s]; i!=-1; i=nxt[i]) //继续往下延拓
    {
        int t=to[i];
        if(t==f)
            continue;
        dfs(t,s);
    }
    dp[pos]=tmp;//恢复
}
void addedge(int f,int t,int ind)
{
    nxt[ind*2]=first[f];
    to[ind*2]=t;
    first[f]=2*ind;
    nxt[ind*2+1]=first[t];
    to[ind*2+1]=f;
    first[t]=2*ind+1;
}
int main()
{
    scanf("%d",&n);
    memset(first,-1,sizeof(first));
    fill(dp,dp+n,inf);//初始化
    for(int i=1; i<=n; i++)
        scanf("%d",r+i);//输入
    for(int i=1; i<n; i++)
    {
        int f,t;
        scanf("%d%d",&f,&t);
        addedge(f,t,i-1);
    }
    for(int i=1; i<=n; i++)
    {
        dfs(i,-1);   //开始分别以i为根遍历
    }
    printf("%d\n",ans);//输出
    return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int maxm = 2e5 + 10;
const int maxn = 2e5 + 10;
typedef long long ll;
struct Edges
{
    int u,v;
} edge[maxm];
vector<int> G[maxn];
int cnt[maxn];
int dfs(int cur,int from)
{
    for(int i = 0 ; i < G[cur].size() ; i ++)
    {
        int v = G[cur][i];
        if(v == from)
            continue;
        cnt[cur] += dfs(v,cur);
    }
    return cnt[cur];
}
int main ()
{
    int n,k;
    scanf("%d %d", &n,&k);
    for(int i = 1 ; i <= k*2 ; i ++)
    {
        int tmp;
        scanf("%d", &tmp);
        cnt[tmp] = 1;
    }
    int cn = 0;
    for(int i = 0 ; i < n-1 ; i ++)
    {
        int u,v;
        scanf("%d %d", &u,&v);
        edge[i].u = u;
        edge[i].v = v;
        G[u].push_back(v);
        G[v].push_back(u);
    }
    dfs(1,-1);
    ll exp = 0;
    for(int i = 0 ; i < n-1 ; i ++)
    {
        Edges & e = edge[i];
        int tt = min(cnt[e.u],cnt[e.v]);
        int tmp = min(2*k-tt,tt);
        exp += tmp;
    }
    printf("%I64d\n",exp);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZ --瑞 hopeACMer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值