自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 隐私计算实训营第二期 第十二节

应用案例:基于隐语的Vision Transformer框架。

2024-06-27 20:24:52 280

原创 隐私计算实训营第二期 第十一节

数据、组件、节点执行、运行报告等协议严格遵守使用中可以在输出信息中看到一些相关细节公开数据,包含名称、类型、附加说明信息data_ref是私有数据对外部开放使用的窗口,映射一个Remote Object根据定义域、名称和版本唯一定位组件的功能类似树形结构,不同的使用参数进入不同的分支,逻辑清晰节点是一个组件的实例输入数据+本地存储设置+组件实例 获得 输出结果支持多种前端友好的展示方式。

2024-06-27 20:02:33 187

原创 隐私计算实训营第二期 第十节

隐私计算+ML感觉有很多应用场景和很广阔的应用前景是我能想到的最适合商用的方向:数据的隐私统筹使用比较早期的方案:每个人持有一个共享模型副本,使用本地数据训练副本,上传梯度给共相模型来更新,每轮下载最新的共享模型后来发现梯度也能用来推断私有数据。更后面的方案就变得五花八门了两个场景:1. 隐私训练:联合数据获得更好的模型2. 隐私推理:保护模型和数据的同时获取预测结果。

2024-06-27 10:51:28 191

原创 隐私计算实训营第二期 第九节

机器学习与隐私安全计算已经实现:支持主流AI前端,底层编译以SPU框架为核心,隐藏了复杂的安全计算细节。

2024-06-27 10:19:14 150

原创 隐私计算实训营第二期 第七节

纵向分割的数据集(多方拥有不同维度)+树模型算法(有效性和可解释性)

2024-06-20 19:35:40 268

原创 隐私计算实训营第二期 第8节

对这节感兴趣先来看看。

2024-06-19 14:35:51 211

原创 隐私计算实训营第二期 第六节

是噪声响应变量Y的条件分布为高斯分布1. 系统组件,线性预测器(主体)2. 随机组件,用一个指数族分布作为响应变量Y概率分布(噪声扰动)3. 连接函数,进行线性预测结果和随机组件对应随机变量期望的映射。

2024-06-17 20:47:25 315

原创 隐私计算实训营第二期 第五节

基于隐私保护的机器学习算法。

2024-06-17 17:01:10 295

原创 隐私计算实训营第二期 第四节

操作很简洁易用。

2024-06-12 21:43:03 158

原创 隐私计算实训营第二期 第三节

本节是介绍隐语架构从技术上来讲,看起来比较关键的是算法层中支持的主要功能,如PSI、联邦学习等和计算层的主要实现算法,对于其中涉及的scql引擎实现尤其感兴趣。

2024-06-09 16:30:02 405

原创 隐私计算实训营第二期 第二节

采集->存储、加工、利用->向外部提供服务角色可以分为三类:数据提供方,服务运营方、数据使用方提供方担心自己的数据被窃取或者用作非法用途使用方担心数据来源是否合法合规主要的担忧其实是针对人。数据失窃、数据非法使用等问题往往都是有运维人员可以直接接触到数据且可以以较低风险操纵数据。需要可靠的技术手段消除各方但担忧,助力数据安全流动。

2024-06-04 20:15:06 219

原创 隐私计算实训营第二期 第一节

隐私计算的核心感觉还是在密码学上。一开始的出发点就是数据持有者不信任外部,担忧其会窃取自己数据,但想要挖掘数据又必须利用外部的服务这样一个矛盾的场景。解决的办法就是对自己的数据加密,使得外部无法辨别真实数据,同时又能进行有效计算处理,将结果返回给数据持有者。这也是同态加密号称密码学圣杯的理由,它可以从根源上解决这一矛盾场景。在工业场景下,又衍生出新的需求(信任四要素的保护),要求数据在出数据持有方自身后,每一步都能做到可监管、可追溯,满足持有方的管控需求。

2024-06-04 19:55:41 436

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除