EX[L(X; w)]的求解

文章解释了期望损失(ExpectationLoss)的概念,它是通过将训练集中每个样本的损失函数乘以其对应概率,然后求和得到的加权平均。这在机器学习中用于衡量模型性能的期望表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E X [ L ( X ; w ) ] = ∑ x ∈ D P ( x ) ∗ L ( x ; w ) \mathbb{E}_{X}[L(X; w)] = \sum_{x\in \mathcal{D}} P(x) * L(x;w) EX[L(X;w)]=xDP(x)L(x;w)

这里:

  • E X [ L ( X ; w ) ] \mathbb{E}_{X}[L(X; w)] EX[L(X;w)] 表示期望损失(Expected Loss)
  • L ( x ; w ) L(x;w) L(x;w) 表示样本 x x x 的损失函数
  • D \mathcal{D} D 表示训练集的数据集
  • P ( x ) P(x) P(x) 表示样本 x x x 的概率分布
  • ∑ \sum 表示对数据集中所有样本的求和运算

所以这个公式表达了期望损失是对训练集中所有样本的损失函数进行概率加权平均。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值