在信息论中,通常使用大写字母(比如 H(X, Y))表示随机变量的熵,而小写字母(比如 H(x, y))通常表示具体数值的熵。
-
H(X, Y)表示随机变量X和Y的联合熵,它是两个随机变量一起出现时的不确定性的度量,描述它们之间的关系和信息量。
-
H(x, y)则表示具体数值x和y的熵。例如,如果 x = 0.3,y = 0.7,那么 H(x, y) 就是这两个具体数值对应的熵,即针对具体的数据点进行熵的计算。
大写字母表示的是随机变量在整个分布上的熵,而小写字母则指代某一具体点上的熵。
当谈论随机变量的熵和特定数值的熵时,我们可以使用一个简单的例子来说明这两者之间的区别。
假设有两个随机变量 X 和 Y,它们的取值如下:
X 可能取值:{0, 1},概率分布 P(X):{P(X=0) = 1/2, P(X=1) = 1/2}
Y 可能取值:{a, b},概率分布 P(Y):{P(Y=a) = 1/3, P(Y=b) = 2/3}
现在我们来计算这两者的熵:
- H(X, Y) - 随机变量 X 和 Y 的联合熵
对于联合熵,我们考虑 X 和 Y 一起出现的不确定性度量。
首先,我们需要构建 X 和 Y 的联合分布。假设联合分布如下:
P(X=0, Y=a) = 1/6
P(X=0, Y=b) = 1/3
P(X=1, Y=a) = 1/6
P(X=1, Y=b) = 1/3
然后,我们使用联合分布来计算联合熵 H(X, Y):
H(X, Y) = - ΣΣ P(x, y) * log2(P(x, y))
计算每个可能组合的概率乘以对数概率,然后求和即可得到联合熵的值。
- H(x, y) - 具体数值的熵
假设我们想计算 X = 0 和 Y = b 时的具体数值的熵。
P(X=0, Y=b) = 1/3
H(x, y) = - P(x, y) * log2(P(x, y))
代入具体的概率值,计算得到这一具体点上的熵值。
这两种熵的计算方式区别在于一种是针对整个随机变量的分布,另一种是对特定点上的具体数值进行计算。