组合数(nCr)和排列数(nPr)是与组合和排列相关的两个常见的组合数学运算。
-
组合数 n C r nCr nCr:
组合数表示从 (n) 个元素中选择 (r) 个元素的不同组合的数量,不考虑元素的顺序。其计算公式为:
( n r ) = n ! r ! ( n − r ) ! \binom{n}{r} = \frac{n!}{r!(n-r)!} (rn)=r!(n−r)!n!计算机上许多计算器和编程语言提供了组合数计算的函数,通常表示为
nCr
或C(n, r)
。例如,在Python中,可以使用math
模块的comb
函数:from math import comb result = comb(n, r)
-
排列数 (nPr):
排列数表示从 (n) 个元素中选择 (r) 个元素并考虑元素的顺序,即不同的排列的数量。其计算公式为:
P ( n , r ) = n ! ( n − r ) ! P(n, r) = \frac{n!}{(n-r)!} P(n,r)=(n−r)!n!计算机上许多计算器和编程语言提供了排列数计算的函数,通常表示为
nPr
或P(n, r)
。例如,在Python中,可以使用math
模块的perm
函数:from math import perm result = perm(n, r)
在使用这些函数时,需要提供相应的整数值 (n) 和 (r) 作为参数。这些函数会返回计算得到的组合数或排列数的结果。