pytorch版本对计算能力的要求

本文探讨了PyTorch对计算能力的需求,从查看CUDA支持到处理因GPU计算能力不足或版本不匹配引发的错误。PyTorch 1.3以上版本不再支持CUDA算力3.5及以下的显卡,建议使用1.2版本或更低,但低版本可能带来其他问题。解决方法包括更换计算机、重新编译源码或调整Python和CUDA版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、pytorch对计算能力要求

出错

首先查看pytorch是否可用cuda完整流程应该是先查看是否在当前环境下的python

In [1]: import sys
In [2]: sys.executable
Out[2]: '/home/xt/anaconda3/envs/xia/bin/python'

接着查看cuda是否安装

torch.cuda.is_available(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天的爱人是绿色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值