线性回归的定义是:目标值预期是输入变量的线性组合。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
那么通过一条直线把这个关系描述出来,叫线性关系
如果是一条曲线,那么叫非线性关系
对于线性回归的损失函数,我们常用的有两种方法来求损失函数最小化时候的参数:一种是梯度下降法,一种是最小二乘法
对于单变量线性回归:
线性回归的定义是:目标值预期是输入变量的线性组合。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
那么通过一条直线把这个关系描述出来,叫线性关系
如果是一条曲线,那么叫非线性关系
对于线性回归的损失函数,我们常用的有两种方法来求损失函数最小化时候的参数:一种是梯度下降法,一种是最小二乘法
对于单变量线性回归: