题目描述;
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/gas-station
- 遍历法
一开始采用了遍历所有加油站的方法,假设从第i个加油站出发,当前含有的油量gasn为gas[i],判断当前油量能否满足走向下一个加油站的cost[i],若满足,则当前油量变为gasn-cost[i]+gas[i],继续向下一个加油站迭代;如果不满足,则该加油站不满足条件,换下一个加油站为起始点。
如果存在一个加油站初始点能够走到所有加油站,则输出这个节点。
int canCompleteCircuit(int* gas, int gasSize, int* cost, int costSize){
int i=0,j,gasn,m=gasSize;
while(i<m)
{
gasn=gas[i];
for(int j=i;j!=m+i;j++)
//用余数遍历环形数组
{
if(gasn<cost[j])
{
break;
}//若到达不了其中一个节点,则不满足条件
gasn=gasn-cost[j]+cost[(j+1)%m];
}
if(j==m+i) return i;//如果遍历所有,则输出
}
return -1;
}
- 一次遍历
两次遍历所有节点的方法用时太长,改进为一次遍历。由题目可知解为唯一解,那么当以i为初始点时,如果前面的节点都满足,而前往i下一个节点不满足时,直接以i+1为新的起始点即可。因为如果有解的话,解的加油顺序是唯一的,优先满足最难到达的解,满足最不容易到达的加油站,这条道路一定是唯一解。
有解和无解可以根据总的加油量是否小于总的耗油量来判断,若有解,则满足以上条件的解一定是最优解。
int canCompleteCircuit(int* gas, int gasSize, int* cost, int costSize){
int i,j,m=gasSize;
int totalgas=0,currgas=0,station=0;
for(i=0;i<m;i++)
{
totalgas+=gas[i]-cost[i];
currgas+=gas[i]-cost[i];
if(currgas<0)
{
station=i+1;
//若不满足条件,直接将下一个节点设置为初始点
currgas=0;
}
}
if(totalgas<0) return -1;
return station;
}