数据分析
文章平均质量分 95
包括python、pandas、numpy、机器学习、MySQL、Hive、Excel在内的知识梳理,以及多项数据分析相关的项目案例
报告,今天也有好好学习
积极、主动、加油
展开
-
从数据角度分析年龄与NBA球员赛场表现的关系【数据分析项目分享】
以数据的角度来看看到底NBA中年龄对球员整体表现影响有多大,也谨以此篇致敬那些还在NBA征战的老将们原创 2024-01-20 10:50:38 · 2432 阅读 · 5 评论 -
我和关注我的1w个粉丝“合影”啦–爬取上万个粉丝的数据并进行数据可视化分析,收获满满
从0到1w,从小白到数据领域的优质创作者,从0到200w的阅读量,真的收获了很多很多,不仅仅是开始在这个平台有了小小的收益,更多的是获得了大家的认可以及无数的问好与感谢,俺也谢谢大家!总之,感谢相遇,未来继续共同进步!原创 2022-02-17 23:57:22 · 16042 阅读 · 19 评论 -
Python中关于字典dict知识点的详细整理【定义、增删查改、遍历字典、字典函数】
由题可得,这篇博客给大家讲的内容是Python中的字典dict相关知识点,Python新手们快来学习呀!原创 2022-02-10 22:49:53 · 10340 阅读 · 0 评论 -
Python中关于列表list的各种技能整理【定义、增删查改、函数、列表表达式】附练习题
今天带大家温习的是Python中的列表操作,全篇博文没有难点问题,很基础但是也很重要,推荐对Python还不够熟悉的朋友赶紧掌握起来哦。原创 2022-02-10 20:33:11 · 15767 阅读 · 0 评论 -
提高工作效率之Pandas数据转换【给常用Pandas的小伙伴整理的博文】
今天带大家温习的是Pandas中最应该掌握的“较为高级”知识点——数据转换。大家快快来学习掌握!原创 2022-02-09 22:54:15 · 10495 阅读 · 0 评论 -
提高工作效率之Python字符串操作【给常用Python的小伙伴整理的博文】
今天带大家温习的是Python中最基础同时也是最常用的知识点——字符串操作。会使用Python的小伙伴通常对下述的内容都比较的熟悉了,不过想要全都懂,可能还需要像我一样专门花时间去整理,或者专门去收藏他人整理好的博文(比如这篇),那么今天,就带大家回顾一下!原创 2022-02-09 23:51:37 · 19805 阅读 · 0 评论 -
Python保存数据到已存在的excel文件中【openpyxl / pandas】复制表格中的所有sheet到另一个表格
Python保存数据到已存在的excel文件中【openpyxl / pandas】复制表格中的所有sheet到另一个表格原创 2022-02-07 23:27:52 · 16893 阅读 · 0 评论 -
Python对表格中的sheet进行排序【openpyxl】工作技能整理系列
今天给大家分享的是Python如何对表格中的sheet进行排序。原创 2022-02-08 23:32:25 · 15628 阅读 · 0 评论 -
如何在工作中提高pandas运行速率?【超实用方法整理】
几种提升pandas运行速率的实用方法。原创 2022-01-28 10:22:51 · 28084 阅读 · 0 评论 -
【工作必备技能整理】openpyxl全套教程,提升工作效率【接力pandas】
openpyxl在我看来,就是用代码代替我们的双手,在EXCEL上操作。在EXCEL上能做到的操作,openpyxl基本都能实现。实话实说,pandas+openpyxl真的是绝配。原创 2022-01-23 13:31:55 · 27265 阅读 · 14 评论 -
pandas这么多实用又常用的技能,还不快快收藏起来
自从我整理完这两篇关于pandas的博文之后,我从博文的阅读以及收藏的数据中不难得知,大家对于这类实用性的博文的认可,同时我自己在工作中有时也会发现,即使我整理了这么多有关于pandas的内容,但或多或少还是会遗漏一些知识点,毕竟pandas实在是太多实用的功能了。那么今天这篇博文呢,我进一步整理了前面这两篇博文没有提到的或者说讲的不够具体的实用技能,大家赶紧收藏起来吧,我保证你们迟早会用到。原创 2022-01-03 12:34:54 · 42159 阅读 · 5 评论 -
【Python】数据分析优秀案例&项目经历-用数据分析能力构建高分学生人群画像
又到了每周末知识分享环节。这次给大家分享的是kaggle上的一个非常有意思的项目,我们希望从中发现学生的测验表现与标签之间的关系。总之,本次项目干货满满,除了通过绘图等常规手段之外,也用到了t检验等假设检验的方法来力求让结论更具说服力。......原创 2021-12-19 17:49:45 · 48548 阅读 · 56 评论 -
学点实用工作小技巧【Python】汉字转拼音、繁体字和简体字互转、提取字符串中的中文(英文)、判断是否纯中文(英文)
又到了每周末知识分享环节。今天想给大家分享的是我最近刚好碰到的一些知识点,主要是对于中英文文本的一些具体的处理。本文真的干货满满,希望大家有所收获,现在用不着也可以先**收藏起来**,等后面用到了就来这里Ctrl+F一下,很实用哦。原创 2021-12-05 18:30:31 · 43990 阅读 · 0 评论 -
【经典永不过时】数据分析网红级别的项目案例分享【超详细】
本周给大家分享的数据分析案例是泰坦尼克号幸存者预测的项目,没记错的话,这应该是很多朋友写在简历上的项目经历。如果你目前正在找工作,自身缺少项目经历并且想要充实项目经历的话,可以考虑一下这个项目!...原创 2021-11-28 16:59:24 · 52035 阅读 · 58 评论 -
【Python】数据分析优秀案例&项目经历-构建Airbnb用户画像并分析用户群体核心特征
最近更博客的频率基本是一周一更了,然后最近的博客也基本会是跟大家分享一些数据分析相关的案例(哈哈哈,就当练练“手感”了)。目前我的博客也已经记录下了很多数据分析相关的案例,也基本都放在了我的数据分析专栏,学习数据分析的朋友可以多看看哦。......原创 2021-11-21 17:47:19 · 44097 阅读 · 18 评论 -
【Python】数据分析优秀案例&项目经历-从多个角度分析CDNow用户特征并提供处理方案
今天跟大家分享的是我之前跟着做过的一门项目,非常的经典,也非常的详细,适合作为数据分析入门的项目。以下是有关的介绍。原创 2021-11-14 21:54:41 · 43430 阅读 · 43 评论 -
学习NumPy全套代码【超详细】基本操作、数据类型、数组运算、复制和试图、索引、切片和迭代、形状操作、通用函数、线性代数
大家好,我又来给大家分享新知识了,几篇博客本篇博客将会给出大家平时使用numpy的时候经常需要用到的功能代码,同时也会给出运行结果,以帮助大家更进一步的理解。另外,我也以注释的形式更进一步的补充说明代码的功能及其作用,需要本篇博文中用到的文档文件以及代码的朋友,也可以三连支持一下,并评论留下你的邮箱,我会在看到后的第一时间发送给你。当然啦,你也可以把本篇博文当作一本小小的pandas书籍,当需要用到pandas哪些知识的时候,Ctrl+F就可以搜索到啦,现在不看的话就先收藏着。目录基本操作数组创建查原创 2021-11-07 16:09:50 · 41980 阅读 · 19 评论 -
学习pandas全套代码【超详细】分箱操作、分组聚合、时间序列、数据可视化
承接上篇博客:[学习pandas全套代码【超详细】数据查看、输入输出、选取、集成、清洗、转换、重塑、数学和统计方法、排序]原创 2021-10-31 15:17:28 · 45096 阅读 · 6 评论 -
学习pandas全套代码【超详细】数据查看、输入输出、选取、集成、清洗、转换、重塑、数学和统计方法、排序
本篇博客将会给出大家平时使用pandas的时候经常需要用到的功能代码,同时也会给出运行结果,以帮助大家更进一步的理解。另外,我也以注释的形式更进一步的补充说明代码的功能及其作用,你也可以把本篇博文当作一本小小的pandas书籍,当需要用到pandas哪些知识的时候,Ctrl+F就可以搜索到啦,现在不看的话就先收藏着。原创 2021-10-29 16:37:35 · 48446 阅读 · 32 评论 -
学习Python全套代码【超详细】Python入门、核心语法、数据结构、Python进阶【致那个想学好Python的你】
通过本篇文章的学习,带你养成编程思维,掌握Python所有的基础语法。而且,看完就完完全全可以说自己会Python了!原创 2021-10-24 21:07:55 · 47459 阅读 · 16 评论 -
如何快速掌握MYSQL?附牛客网所有SQL题目详解
朋友们,如果你以后想要进一家还不错的公司,那么建议你一定要去刷题。如果你目前啥也不会,只停留在知道SELECT用于查询的层面的话,又想要快速掌握MYSQL,那么刷题,并且过程中不会什么补什么,就是巩固和提升自己的SQL语言能力最快捷的方法。补充:牛客网相对于LeetCode而言题目较少,且难度较低一些,但胜在免费,并且有些公司笔试的时候会直接饮用牛客网上的原题,所以也非常值得我们去刷一刷题。另外,本篇文章以题号排序,但同时也标上了每道题的难度和原题链接。牛客网上是没有办法按难度进行排序的,大家可以收藏原创 2021-10-19 16:14:15 · 35754 阅读 · 11 评论 -
【超详细】数据分析笔试题分享,可以收藏后仔细阅读
不定项选择题21道1、 以下选项不正确的是()A、使用drop是否会释放空间B、Truncate是否可以搭配where使用C、alter…drop… 可用于除去表中字段D、Delete是否会释放空间2、以下常用于衡量用户粘性的指标有哪些()A、DAUB、usage penetrationC、RevenueD、Retention3、一年四个季度,第二到第四个季度对于上个季度的销售额增长率分别为5%、10%、15%,请问第四个季度相对于第一季度的增长率为()A、50%B、80%C、3原创 2021-10-17 23:39:07 · 41257 阅读 · 9 评论 -
大厂笔试都考什么题?超详细的笔试试题【附带解析】数据分析
最近正值秋招,许多朋友也都拿到了心仪的offer,不过也有不少的朋友还在网申 ——> 笔试 ——> 被刷之中反复循环,而导致这一现状的重要原因很有可能是自己不懂得总结归纳,就算是一次简单的笔试,自己也应该懂得去总结复盘,切勿在每次的笔试中犯同样的错误。那么今天,我给大家带来了一份关于数据分析岗位的笔试题,题目基本上还原了全部的真实考题,并附带了详细解析,希望有需要的朋友赶紧收藏起来,并仔细阅读,后续我也会不断更新其他的笔试卷子,有需要的朋友可以关注我。原创 2021-10-16 09:34:14 · 32759 阅读 · 4 评论 -
如何快速掌握MYSQL?附牛客网精选的50道SQL题目详解【入门推荐】
如何才能快速掌握MYSQL?如何熟悉使用SQL以满足日常工作需求?如果你目前啥也不会,只停留在知道SELECT用于查询的层面的话,又想要快速掌握MYSQL,那么刷题,并且过程中不会什么补什么,就是巩固和提升自己的SQL语言能力最快捷的方法。那么在之前的一篇博客中,我给出了LeetCode上出现频率最高的50道数据库题目详解,那么这一次,我也SQ给出了牛客网上的50道SQL题,希望对大家有所收获。补充:牛客网相对于LeetCode而言题目较少,且难度较低一些,但胜在免费,并且很多公司笔试的时候会直接饮用原创 2021-10-13 13:12:14 · 32965 阅读 · 6 评论 -
分享一个超详细的数据分析案例【Python】附ABTest详细介绍
分享一个超详细的数据分析案例【Python】附ABTest详细介绍原创 2021-10-08 15:13:00 · 49530 阅读 · 55 评论 -
详细讲解ABTest假设检验【实验设计&结论分析】数据分析
目录一、实验设计1确定业务目标2 选择检验指标2.1 选择一类指标2.2 选择统计量3 确定原假设与备择假设4 两类统计错误的防范5 样本量计算6 检验策略选择、设计分组策略7 当企业没有AB测试的条件的时候,如何解决问题?二、实验结论分析1 决策统计检验2 决策业务问题结束语我在上一篇博客中提到了什么是ABTest,并引用了一个项目,感兴趣的朋友可以再去看看。本篇博客会从企业真实业务的角度来再次介绍假设检验,建议大家收藏后慢慢阅读。一、实验设计1确定业务目标明确我们要提升的业务指标,如日营业额原创 2021-10-07 11:56:54 · 44081 阅读 · 10 评论 -
一文带你了解常见的数据指标都有哪些【数据分析】
为了进一步提升自己分析业务的能力,首先得先了解好在日常业务分析当中往往会用到那些数据指标。接下来我给大家整理了常见的一些数据指标,建议收藏后慢慢阅读。目录用户获取渠道到达量渠道转化率渠道ROI日应用下载量日新增用户数用户获取成本一次会话用户数用户活跃活跃用户PV和UV用户会话次数用户访问时长功能使用率用户留存留存率用户流失率退出率和跳出率市场营销用户生命周期用户生命周期价值用户忠诚指数用户流失指数用户价值指数结束语用户获取渠道到达量这个俗称曝光量,如果在CSDN有发过博客的朋友应该知道“展现量”这原创 2021-10-04 23:06:10 · 37104 阅读 · 8 评论 -
每日分享,一个不错的数据分析实战案例【数据分析可视化】MySQL+Python
利用SQL和pandas对11支球队在7个赛季中的25979场比赛数据,分析各球队在每个赛季的主客场得分情况以及联赛积分情况。原创 2021-10-03 10:47:57 · 38328 阅读 · 5 评论 -
分享一个不错的数据分析实战案例【全程附图】EXCEL
利用最近一次的营销活动的信息,分析什么对推销结果的影响最大,如何确定银行定期产品推销中最具价值的客户。原创 2021-10-01 17:28:20 · 75025 阅读 · 145 评论 -
概念+实战讲解,一文带你了解RFM模型【kaggle项目实战分享】数据分析
RFM模型是数据分析师必须掌握的知识点,而本篇文章详细介绍RFM模型的同时,还附带了kaggle项目实战,收藏本篇文章,你还怕搞不懂RFM模型,不懂怎么对用户进行分类吗?原创 2021-09-29 14:51:55 · 49362 阅读 · 5 评论 -
MySQL实战演练——如何才能构建逾期用户画像?【数据可视化】
这是拍拍贷互联网金融训练营提供的一份数据,为拍拍贷真实业务数据,但仅为信用标的一个样本,仅供数据分析和学术研究目的使用,而非信息披露。从这个数据中推导得到的结果不反映拍拍贷平台的整体情况,也不代表拍拍贷官方的态度。原创 2021-09-28 09:40:31 · 45026 阅读 · 4 评论 -
如何快速掌握MYSQL?附LeetCode上出现频率最高的50道数据库题目详解
LeetCode中有不少题是需要Plus会员才能查看并答题的,所以为避免以后会员过期无法再次查看以及加深自身对题目的理解,进行了MYSQL题目的一次大整理。LeetCode上题目众多,而本篇筛选出了LetCode上出现频率最高的50道题目,并且按出现频率由高到低整理,每道题实现的具体方法和思路都贴在了代码注释,整理不易,希望大家能够做完这些题目或者看完这篇博客,并从中有所获。原创 2021-09-26 23:26:05 · 45040 阅读 · 15 评论 -
必须了解的EXCEL常用函数都有哪些?【附动图详解】数据分析
这应该是我除了计算智能这篇博客之外,整理的最辛苦的一篇博客了。看了CSDN上有不少关于EXCEL函数介绍的,但都没有结合动图来介绍。而本篇博客通过录制动图的方法,并且结合EXCEL官网对于函数的介绍,让大家更直观地感受到函数的具体功能究竟如何。当然,如果你本身只是想了解一下功能大概如何的话,看最前面的表格部分即可。本篇博客根据函数功能分为五大部分,详见目录,你也可以跳转到自己想了解的那一部分。满满干货,建议收藏。希望这篇博客对大家能够有所收获!目录数据清洗类TRIM 函数CONCATENATE 函数原创 2021-09-25 21:13:05 · 47075 阅读 · 11 评论 -
超详细案例讲解如何寻求产品的市场增长点?【线性回归&数据可视化】
这个项目呢,就不需要我们做很多的数据清洗的工作了,因为我们手里的数据基本已经做好数据清洗了,我们主要需要做的就是数据可视化和文本挖掘工作。下面我们来一一介绍一下。目录1 业务背景1.1 分析流程概述1.2 市场分类1.3 产品生命周期1.4 产品结构-波士顿矩阵(BCG Matrix)1.5 处理项目需求的基本思路1.6 项目需求例子1.7 项目背景&产品架构1.8 数据说明2 驱虫市场的潜力分析2.1 分析目的&加载数据2.1.1 分析目的2.1.2 加载数据2.2 清洗&补全数原创 2021-09-17 22:00:20 · 47983 阅读 · 22 评论 -
基于决策树模型的金融保险用户分类综合项目【数据可视化&相关性分析&填充缺失值&转码&建模&商业应用】
本次文章将会介绍一篇基于决策树模型的金融保险用户分类综合项目,我会从行业背景讲起,将整个项目包括代码全po上来,欢迎阅读收藏。原创 2021-09-16 20:48:15 · 37249 阅读 · 28 评论 -
一文带你用Python玩转K-Means算法 ;各种参数详细说明;如何评估无监督模型?
目录必看前言1 使用sklearn实现K-Means1.1 重要参数:n_clusters1.2 重要属性 cluster.labels_1.3 重要属性 cluster.cluster_centers_1.4 重要属性 cluster.inertia_2 聚类算法的模型评估指标:轮廓系数结束语必看前言本文将大家用sklearn来实现K-Means算法以及各参数详细说明,并且介绍无监督学习算法的评估指标,干货满满,欢迎收藏!1 使用sklearn实现K-Means1.1 重要参数:n_cluster原创 2021-09-19 21:49:07 · 58826 阅读 · 6 评论 -
以《简单易懂》的语言带你搞懂无监督学习算法【附Python代码详解】机器学习系列之K-Means篇
目录必看前言无监督学习算法1 聚类与分类2 K-Means算法2.1 K-Means的基本原理2.1.1 K-Means 是如何工作的?2.1.2 簇内误差平方和的定义2.2 K-Means算法的python实现2.2.1 导入数据集2.2.2 编写距离计算函数2.2.3 编写随机生成质心函数2.2.4 编写 K-Means 聚类函数2.2.5 算法验证结束语必看前言今天这一篇文章,将跟大家分享一下无监督学习算法。而本文将试图用简单易懂的语言来讲说到底什么是无监督学习算法,同时主要会以KMeans算法原创 2021-09-18 22:06:08 · 38725 阅读 · 20 评论 -
以《简单易懂》的语言带你搞懂逻辑回归算法【附Python代码详解】机器学习系列之逻辑回归篇
目录必看前言逻辑回归算法1 概述2 基本原理3 sklearn实现3.1 导入数据(乳腺癌数据集)3.2 建模3.3 绘制学习曲线3.4 网格搜索-确定最优参数结束语必看前言这一篇文章,我会详细从机器学习的角度介绍逻辑回归,以及如何利用Python来实现逻辑回归以及逻辑回归的实战模拟,另外我也会教大家如何利用网格搜索找到最优参数。干货满满!逻辑回归算法1 概述分类技术是机器学习和数据挖掘应用中的重要组成部分。在数据科学中, 绝大多数的问题属于分类问题。解决分类的算法也有很多种。 如:KNN,使距原创 2021-09-15 22:44:16 · 40494 阅读 · 8 评论 -
一文带你用Python玩转线性回归模型《加利福尼亚房价预测》回归模型评估指标介绍
前言这一篇文章,我会详细介绍如何利用Python来实现线性回归以及线性回归的实战模拟,以及回归模型的评估指标的详细介绍,感兴趣的朋友可以看一看。目录前言1 线性回归的Scikit-learn实现1.1 导入模块后开始下载数据1.2 拆分数据集(训练集和测试集)1.3 线性回归建模1.4 训练数据1.5 模型评估1.6 将数据集标准化之后再训练1.7 绘制拟合图像2 多重共线性2.1 理解与代码实现2.2 与变换前的模型拟合效果进行比对结束语1 线性回归的Scikit-learn实现接下来以一个加利福原创 2021-09-14 19:22:24 · 25961 阅读 · 18 评论 -
如何搞懂机器学习中的线性回归模型?机器学习系列之线性回归基础篇
前言从今天这篇文章开始,我会介绍线性回归相关的内容。目录前言1 概述2 线性回归与机器学习3 线性回归的机器学习表示方法3.1 核心逻辑3.2 优化目标3.3 最小二乘法1 概述在正式进入到回归分析的相关算法讨论之前,我们需要对有监督学习算法中的回归问题进行进一步的分析和理解。虽然回归问题和分类问题同属于有监督学习范畴,但实际上,回归问题要远比分类问题更加复杂。首先是关于输出结果的对比,分类模型最终输出结果为离散变量,而离散变量本身包含信息量较少,其本身并不具备代数运算性质,因此其评价指标体系也较原创 2021-09-13 16:23:42 · 39112 阅读 · 27 评论