知识点
位运算的主要操作符<<,>>,&,|,^ ,分别是左移,右移,位与,位或,位异或。
左移常用操作 1<<n 表示2n,左移n位表示*2n,其实很好理解
右移常用操作k>>1表示/2,向0取整,向0取整,而/2是向下取整,感受一下这细微的区别。
位与,常用操作n&1,提取最低位。
位或,一般用于把某一项置1。
位异或,把某一项取反。
lowbit运算:n&(-n),提取从右向左的第一个1,比如(111001010110000)提取10000
还有就是位运算的优先级比较奇怪,不放心的话就+括号。
a^b
求 a 的 b 次方对 p 取模的值。
输入格式
三个整数 a,b,p ,在同一行用空格隔开。
输出格式
输出一个整数,表示a^b mod p的值。
数据范围
0≤a,b,p≤109
输入样例:
3 2 7
输出样例:
2
快速幂,模板题。
#include<iostream>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int main(){
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
ll a,b,p;
cin>>a>>b>>p;
ll res=1%p;//防止p=0,这种毒瘤点。
while(b)
{
if(b&1) res=(res*a)%p;//每次提取b中最低位,如果为1,迭代res
b>>=1;//b右移一位
a=(a*a)%p;
}
cout<<res<<endl;
return 0;
}
我们来看一下算法的原理(蒟蒻我不会证明,只会用简单的方式帮助你理解)
比如求3^3=3 * 3 * 3
3的二进制为 11, 刚好是2个3和1个3相乘(32 * 3)
又比如3^7=3 * 3 * 3 * 3 * 3 * 3 * 3
7的二进制为111,刚好是4个3,2个3,和1个3相乘(34*32*3)
刚好每一项的平方就是下一项,(34=(32)2)
我们由此得到了上面代码的规律。
64位整数乘法
求 a 乘 b 对 p 取模的值。
输入格式
第一行输入整数a,第二行输入整数b,第三行输入整数p。
输出格式
输出一个整数,表示a*b mod p的值。
数据范围
1≤a,b,p≤1018
输入样例:
3
4
5
输出样例:
2
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int main(){
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
ll a,b,p;
cin>>a>>b>>p;
ll res=0;
while(b)
{
if(b&1) res=(res+a)%p;
b>>=1;
a=(a+a)%p;
}
cout<<res<<endl;
return 0;
}
和乘方一样这题就是,把上题的乘法变为了加法。
最短Hamilton路径
给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
输出一个整数,表示最短Hamilton路径的长度。
数据范围
1≤n≤20
0≤a[i,j]≤107
输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18
这题要好好说一下了,这题用动态规划的思想压缩状态, f [ i ] [ j ] , i 表 示 经 过 了 哪 些 点 , j 表 示 当 前 位 于 哪 个 点 f[i][j],i表示经过了哪些点,j表示当前位于哪个点 f[i][j],i表示经过了哪些点,j表示当前位于哪个点我们不关心具体路线是什么,比如(1->3->2->4)还是(1->2->3->4)我们不关心是怎么走的,我们只在乎在哪个状态下 ,消耗的代价最小。然后进行下一个状态,来看代码。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1<<20][20],w[20][20];
int n;
int main(){
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>w[i][j];
memset(f,0x3f,sizeof f);
f[1][0]=0;
for(int i=1;i<1<<n;i++)//枚举状态
for(int j=0;j<n;j++) if(i>>j&1)//枚举当前点,当然只有当前点在i里面才能枚举当前点。
for(int k=0;k<n;k++) if((i^(1<<j))>>k&1)//枚举中介点,假如以k作为中点是否比原先的要快,比如a->c 我们枚举a->b->c,当然这也需要k存在于状态中,且不与j重合。
f[i][j]=min(f[i][j],f[i^(1<<j)][k]+w[k][j]);
cout<<f[(1<<n)-1][n-1];
return 0;
}