Windows 系统如何定时运行 Python 程序或脚本

需求

我们经常有需要在系统上定时运行某个 Python 脚本来执行任务,例如每天定时运行 Python 爬虫脚本来获取数据,那在 Windows 系统上该如何定时运行 Python 脚本或程序呢?

步骤

1.快捷键 Win + x 打开计算机管理界面:
在这里插入图片描述
2.点击任务计划程序,选择创建基本任务:
在这里插入图片描述
3.设置任务名称,描述可写可不写,点击下一步:
在这里插入图片描述
4.设置任务执行的频率,点击下一步:
在这里插入图片描述
5.设置任务执行的时间和间隔,点击下一步:
在这里插入图片描述
6.操作选择启动程序,点击下一步:
在这里插入图片描述
7.设置脚本或程序的位置,点击下一步:

  • 定时运行 Python 脚本
    程序或脚本选择 Python 解释器的位置,添加参数为 Python 脚本,起始于脚本所在目录(test.py 的功能为输出一行 ‘Hello World!’):
    在这里插入图片描述

  • 定时运行 Python 打包生成的 .exe 可执行文件
    使用 pyinstaller 打包 Python 脚本:pyinstaller -F test.py
    生成 test.exe 文件后,将程序或脚本选择该可执行文件即可,添加参数可为空,起始于 .exe 文件所在目录:
    在这里插入图片描述

8.点击完成:
在这里插入图片描述

结果

1.点击刷新可以看到刚刚设置的任务:
在这里插入图片描述

2.双击打开可选择立即运行或者等到设定的时间,Python 程序或脚本会被自动执行:

启用所有任务历史记录可开启查看任务运行日志,点击属性可对该任务进行修改
在这里插入图片描述
在这里插入图片描述

### Qwen 2.5 视觉语言模型最大能力和参数 Qwen 2.5 是一种多模态大模型,在处理视觉和语言任务方面表现出显著的能力。该模型能够理解图像并生成相应的描述,执行视觉问答 (VQA),以及完成其他涉及图像理解和自然语言交互的任务[^1]。 对于具体的技术细节: - **参数量**:Qwen 2.5 的参数规模达到数十亿级别,这使得其具备强大的表达能力来捕捉复杂的模式。 - **输入长度限制**:支持较长上下文窗口,允许更丰富的对话历史记录参与当前轮次的理解过程。 - **跨模态融合机制**:通过精心设计的架构实现高效而精准的图文信息关联学习,从而增强对复杂场景下语义关系建模的效果。 为了展示这种能力,下面是一个简单的 Python 脚本示例,用于加载预训练好的 Qwen 2.5 模型并对给定图片进行描述: ```python from transformers import AutoModelForVision2Seq, AutoProcessor processor = AutoProcessor.from_pretrained("qwen/Qwen-VL-2.5") model = AutoModelForVision2Seq.from_pretrained("qwen/Qwen-2.5") image_url = "http://example.com/path/to/image.jpg" text = "Describe this image." inputs = processor(image=image_url, text=text, return_tensors="pt") outputs = model.generate(**inputs) print(processor.decode(outputs[0], skip_special_tokens=True)) ``` 此脚本展示了如何利用 Hugging Face Transformers 库中的 `AutoModelForVision2Seq` 和 `AutoProcessor` 类轻松调用 Qwen 2.5 进行基于图像的内容生成任务。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值