55. 跳跃游戏
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
方法一:从后往前贪心
bool canJump(int* nums, int numsSize){
if(nums == NULL) {
return false;
}
int endnums = numsSize-1;
for(int i = numsSize-1; i >= 0; i--) {
if(nums[i]+i >= endnums) {
endnums = i;
}
}
return endnums == 0;
}
方法二:从前往后跳跃 不断更新最大跳跃步数
bool canJump(int* nums, int numsSize){
int k = 0;
for(int i = 0; i < numsSize; i++) {
if(i > k) {
return false;
}
int t = i+nums[i];
if(t > k) {
k = t;
}
}
return true;
}
45. 跳跃游戏 II
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明:
假设你总是可以到达数组的最后一个位置。
贪心法
int jump(int* nums, int numsSize){
int end = 0;
int step = 0;
int max = 0;
for(int i = 0; i < numsSize-1; i++) {
int t = nums[i]+i;
if(t > max) {max = t;} //找最大的,最优的
if(i == end) {
end = max;
step++;
} //更新边界,增加步数
}
return step;
}
end = 0时step+1,因此,i计数到numsSize-1