《算法导论》-分治策略,矩阵相乘Strassen算法(伪代码,Java)

一.矩阵基础

     因为计算机相关专业都学了线性代数基础的知识这里就不介绍了,首先来看一下这个矩阵:

 A,B矩阵相乘得到C矩阵:

 如果要计算上述矩阵,最简单的通用方法是通过三个循环也就是复杂度为O(n^3)

因为笔者常用java所以简单的用java来表示:

package Main;
public class Test {
    public static void main(String[] args) {
        int[][] A = {{1,2},{2,1}};
        int[][] B = {{1,2},{3,4}};
        int[][] C = new int[2][2];  //anser
        for(int i=0;i<A.length;i++){
            for(int j=0;j<B.length;j++){
                for(int k=0;k<C.length;k++){
                    C[i][j] += A[i][k] * B[k][j];
                }
            }
        }
        for(int i=0;i<A.length;i++){
            for(int j=0;j<B.length;j++) {
                System.out.print(C[i][j]+" ");
            }
            System.out.println();
        }
    }
}

二.矩阵公式与递归

 通过上述循环的方法我们发现计算无非用到了下面几个公式:

两个n*n的矩阵相乘要用到2个n/2*n/2的矩阵相乘,8次乘法,4次加法每次乘法加法的公式是相同的所以可以利用上述公式进行递归运算得到计算结果:

SQUARE-MATRIX-MULTIPLY(A,B)
n = A.rows
let C be a new n*n matrix
if n==1
   c11 = a11 * b11
else
   C11 = SQUARE-MATRIX-MULTIPLY(A11,B11)+
         SQUARE-MATRIX-MULTIPLY(A12,B21)
   C12 = SQUARE-MATRIX-MULTIPLY(A11,B12)+
         SQUARE-MATRIX-MULTIPLY(A12,B22)
   C21 = SQUARE-MATRIX-MULTIPLY(A21,B11)+
         SQUARE-MATRIX-MULTIPLY(A22,B21)
   C22 = SQUARE-MATRIX-MULTIPLY(A21,B12)+
         SQUARE-MATRIX-MULTIPLY(A22,B22)
return c

再来看看多阶矩阵,其实与2*2的矩阵是一样的,一个大矩阵可以化为几个小矩阵:

 

三.Strassen算法思想

上述递归过程也并没有减少乘与加的次数,Strassen提供了新的方法:

还是这个矩阵:

对其进行分解:

 创建10个n/2小矩阵,递归计算7个矩阵

通过这七个P矩阵计算C矩阵:

计算C的结果并不复杂,计算方式如下(以C12为例):

 共计7次乘法,6次加法,4次减法,时间复杂度:

Strassen算法的特点是适用于比较大的矩阵,通过递归划分,再用上述公式解决。至于公式是怎么来的:这是Strassen做了很多努力得来的。总结:

四.伪代码实现

n为偶数时毋庸置疑Strassen算法成立,在这里考虑到奇数情况,这种情况不能使用Strassen算法,将n*n矩阵分解为(n-1)*(n-1)与一个(n-1)*1

NAIVE-MULTIPLY(A,B) //普通算法
  m = A.rows
  n = B.columns
  p = A.columns
  for i = 1 to m
    for j = 1 to n
      cij = 0
       for k = 1 to p
         cij += aik * bkj
STRASSEN-SQUARE-MATRIX-MULTIPLY(A,B)
n = A.rows
if n == 1
  c11 = a11+b11
else if n is odd   //为奇数情况
  divide An*n into 4sub-matrices A11(n-1)*(n-1),A12(n-1)*1,A21(n-1)*1,A21_1*1 //分为小矩阵
  divide Bn*n into 4sub-matrices B11(n-1)*(n-1),B12(n-1)*1,B21(n-1)*1,B21_1*1
  divide Cn*n into 4sub-matrices C11(n-1)*(n-1),C12(n-1)*1,C21(n-1)*1,C21_1*1
  C11 = STRASSEN-SQUARE-MATRIX-MULTIPLY(A11,B11) + NAIVE-MULTIPLY(A12,B21)
  C12 = NAIVE-MULTIPLY(A11,B12) + NAIVE-MULTIPLY(A12,B22)
  C21 = NAIVE-MULTIPLY(A21,B11) + NAIVE-MULTIPLY(A22,B21)
  C22 = NAIVE-MULTIPLY(A21,B12) + NAIVE-MULTIPLY(A22,B22)
else
  divide An*n into 4sub-matrices A11(n/2)*(n/2),A12(n/2)*(n/2),A21(n/2)*(n/2),A21(n/2)*(n/2)    //分为小矩阵
  divide Bn*n into 4sub-matrices B11(n/2)*(n/2),B12(n/2)*(n/2),B21(n/2)*(n/2),B21(n/2)*(n/2)
  divide Cn*n into 4sub-matrices C11(n/2)*(n/2),C12(n/2)*(n/2),C21(n/2)*(n/2),C21(n/2)*(n/2)
  S1 = B12 - B22
  S2 = A11 - A12
  S3 = A21 + A22
  S4 = B21 - B11
  S5 = A11 + A22
  S6 = B11 + B22
  S7 = A12 - A22
  S8 = B21 + B22
  S9 = A11 - A21
  S10 = B11 + B12
  P1 = STRASSEN-SQUARE-MATRIX-MULTIPLY(A11,S1)
  P2 = STRASSEN-SQUARE-MATRIX-MULTIPLY(S2,B22)
  P3 = STRASSEN-SQUARE-MATRIX-MULTIPLY(S3,B11)
  P4 = STRASSEN-SQUARE-MATRIX-MULTIPLY(A22,S4)
  P5 = STRASSEN-SQUARE-MATRIX-MULTIPLY(S5,S6)
  P6 = STRASSEN-SQUARE-MATRIX-MULTIPLY(S7,S8)
  P7 = STRASSEN-SQUARE-MATRIX-MULTIPLY(S9,S10)
  C11 = P5 + P4 - P2 + P6
  C12 = P1 + P2
  C21 = P3 + P4
  C22 = P5 + P1 - P3 -P7
return C 

五.Java实现

package Main;

/****************
 * @author RIDDLE!
 * @data  2022/11/24
 ****************/
public class Test {
    public static void main(String[] args) {
        int[][] A = {{1,2,1,2},
                     {2,1,2,1},
                     {1,2,2,1},
                     {1,2,2,1}};
        int[][] B = {{1,2,1,2},
                     {3,4,3,4},
                     {1,5,6,7},
                     {2,3,4,6}};
        int[][] C = new int[4][4];
        Strassen(A,B,C);
        Show(C);
    }

    public static void Show(int[][] C){
        for(int i=0;i<C.length;i++){
            for(int j=0;j<C.length;j++) {
                System.out.print(C[i][j]+" ");
            }
            System.out.println();
        }
    }
    public static void Strassen(int[][] A,int[][] B,int[][] C){
        int temp1[][] = new int[A.length/2][A.length/2];
        int temp2[][] = new int[A.length/2][A.length/2];

        int[][] P1 = new int[A.length/2][A.length/2];
        int[][] P2 = new int[A.length/2][A.length/2];
        int[][] P3 = new int[A.length/2][A.length/2];
        int[][] P4 = new int[A.length/2][A.length/2];
        int[][] P5 = new int[A.length/2][A.length/2];
        int[][] P6 = new int[A.length/2][A.length/2];
        int[][] P7 = new int[A.length/2][A.length/2];

        int[][] C11 = new int[A.length/2][A.length/2];
        int[][] C12 = new int[A.length/2][A.length/2];
        int[][] C21 = new int[A.length/2][A.length/2];
        int[][] C22 = new int[A.length/2][A.length/2];

        int[][] A11 = new int[A.length/2][A.length/2];
        int[][] A12 = new int[A.length/2][A.length/2];
        int[][] A21 = new int[A.length/2][A.length/2];
        int[][] A22 = new int[A.length/2][A.length/2];

        int[][] B11 = new int[B.length/2][B.length/2];
        int[][] B12 = new int[B.length/2][B.length/2];
        int[][] B21 = new int[B.length/2][B.length/2];
        int[][] B22 = new int[B.length/2][B.length/2];

        if(A.length == 1){
            matrixMul(A,B,C);
            return;
        }
        else{
            for (int i = 0; i < A.length / 2; i++) {
                for (int j = 0; j < A.length / 2; j++) {
                    A11[i][j] = A[i][j];
                    A12[i][j] = A[i][j + A.length / 2];
                    A21[i][j] = A[i + A.length / 2][j];
                    A22[i][j] = A[i + A.length / 2][j + A.length / 2];
                    B11[i][j] = B[i][j];
                    B12[i][j] = B[i][j + A.length / 2];
                    B21[i][j] = B[i + A.length / 2][j];
                    B22[i][j] = B[i + A.length / 2][j + A.length / 2];
                }
            }

            matrixSub(B12, B22, temp1);  //S1 = B12-B22
            Strassen(A11, temp1, P1);     //P1

            matrixSub(A11, A12, temp1);  //S2 = A11-A12
            Strassen(temp1, B22, P2);  //P2

            matrixSum(A21, A22, temp1);  //S3 = A21-A22
            Strassen(temp1, B11, P3);  //P3

            matrixSub(B21, B11, temp1);  //S4 = B21-B11
            Strassen(A22, temp1, P4);  //P4

            matrixSum(A11, A22, temp2);  //S5 = A11+A22
            matrixSum(B11, B22, temp1);  //S6 = B11+B22
            Strassen(temp2, temp1, P5);  //P5

            matrixSub(A12, A22, temp2);  //S7 = A12-A22
            matrixSum(B21, B22, temp1);  //S8 = B21+B22
            Strassen(temp2, temp1, P6);   //P6

            matrixSub(A11, A21, temp2);  //S9 = A11-A21
            matrixSum(B11, B12, temp1);  //S10 = B11+B12
            Strassen(temp2, temp1, P7); //P7


            matrixSum(P5, P4, temp2);//C11 = P5+P4-P2+P6
            matrixSub(temp2, P2, temp1);
            matrixSum(temp1, P6, C11);

            matrixSum(P1, P2, C12);//C12 = P1+P2

            matrixSum(P3, P4, C21);//C21 = P3+P4

            matrixSum(P5, P1, temp2);  // C22 = P5+P1-P3-P7
            matrixSub(temp2, P3, temp1);
            matrixSub(temp1, P7, C22);

            // 将C11,C12,C21,C22写入C中
            for (int i = 0; i < C.length / 2; i++) {
                for (int j = 0; j < C.length / 2; j++) {
                    C[i][j] = C11[i][j];
                    C[i][j + C.length / 2] = C12[i][j];
                    C[i + C.length / 2][j] = C21[i][j];
                    C[i + C.length / 2][j + C.length / 2] = C22[i][j];
                }
            }
        }

    }

    public static void matrixSum(int[][] A,int[][] B,int[][] temp1){  //矩阵加法
        for(int i=0;i<A.length;i++){
            for(int j=0;i<B.length;j++){
                temp1[i][j] = A[i][j] + B[i][j];
            }
        }
    }

    public static void matrixSub(int[][] A,int[][] B,int[][] temp2){  //矩阵减法
        for(int i=0;i< A.length;i++){
            for(int j=0;j< B.length;j++){
                temp2[i][j] = A[i][j] - B[i][j];
            }
        }
    }

    public static void matrixMul(int[][] A,int[][] B,int[][] temp){  //矩阵相乘
        for(int i=0;i<A.length;i++) {
            for (int j = 0; j < B.length; j++) {
                for (int k = 0; k < temp.length; k++) {
                    temp[i][j] += A[i][k] * B[k][j];
                }
            }
        }
    }

}

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。 --------------------------------------------------------------- 目录 Introduction to Algorithms, Third Edition 出版者的话 译者序 前言 第一部分 基础知识 第1章 算法在计算中的作用  1.1 算法  1.2 作为一种技术的算法  思考题  本章注记 第2章 算法基础  2.1 插入排序  2.2 分析算法  2.3 设计算法   2.3.1 分治法   2.3.2 分析分治算法  思考题  本章注记 第3章 函数的增长  3.1 渐近记号  3.2 标准记号与常用函数  思考题  本章注记 第4章 分治策略  4.1 最大子数组问题  4.2 矩阵乘法的Strassen算法  4.3 用代入法求解递归式  4.4 用递归树方法求解递归式  4.5 用主方法求解递归式  4.6 证明主定理   4.6.1 对b的幂证明主定理   4.6.2 向下取整和向上取整  思考题  本章注记 第5章 概率分析和随机算法  5.1 雇用问题  5.2 指示器随机变量  5.3 随机算法  ?5.4 概率分析和指示器随机变量的进一步使用   5.4.1 生日悖论   5.4.2 球与箱子   5.4.3 特征序列   5.4.4 在线雇用问题  思考题  本章注记 第二部分 排序和顺序统计量 第6章 堆排序  6.1 堆  6.2 维护堆的性质  6.3 建堆  6.4 堆排序算法  6.5 优先队列  思考题  本章注记 第7章 快速排序  7.1 快速排序的描述  7.2 快速排序的性能  7.3 快速排序的随机化版本  7.4 快速排序分析   7.4.1 最坏情况分析   7.4.2 期望运行时间  思考题  本章注记 第8章 线性时间排序  8.1 排序算法的下界  8.2 计数排序  8.3 基数排序  8.4 桶排序  思考题  本章注记 第9章 中位数和顺序统计量  9.1 最小值和最大值  9.2 期望为线性时间的选择算法  9.3 最坏情况为线性时间的选择算法  思考题  本章注记 第三部分 数据结构 第10章 基本数据结构  10.1 栈和队列  10.2 链表  10.3 指针和对象的实现  10.4 有根树的表示  思考题  本章注记 第11章 散列表  11.1 直接寻址表  11.2 散列表  11.3 散列函数   11.3.1 除法散列法   11.3.2 乘法散列法   11.3.3 全域散列法  11.4 开放寻址法  11.5 完全散列  思考题  本章注记 第12章 二叉搜索树  12.1 什么是二叉搜索树  12.2 查询二叉搜索树  12.3 插入和删除  12.4 随机构建二叉搜索树  思考题  本章注记 第13章 红黑树  13.1 红黑树的性质  13.2 旋转  13.3 插入  13.4 删除  思考题  本章注记 第14章 数据结构的扩张  14.1 动态顺序统计  14.2 如何扩张数据结构  14.3 区间树  思考题  本章注记 第四部分 高级设计和分析技术 第15章 动态规划  15.1 钢条切割  15.2 矩阵链乘法  15.3 动态规划原理  15.4 最长公共子序列  15.5 最优二叉搜索树  思考题  本章注记 第16章 贪心算法  16.1 活动选择问题  16.2 贪心算法原理  16.3 赫夫曼编码  16.4 拟阵和贪心算法  16.5 用拟阵求解任务调度问题  思考题  本章注记 第17章 摊还分析  17.1 聚合分析  17.2 核算法  17.3 势能法  17.4 动态表   17.4.1 表扩张   17.4.2 表扩张和收缩  思考题  本章注记 第五部分 高级数据结构 第18章 B树  18.1 B树的定义  18.2 B树上的基本操作  18.3 从B树中删除关键字  思考题  本章注记 第19章 斐波那契堆  19.1 斐波那契堆结构  19.2 可合并堆操作  19.3 关键字减值和删除一个结点  19.4 最大度数的界  思考题  本章注记 第20章 van Emde Boas树  20.1 基本方法  20.2 递归结构   20.2.1 原型van Emde Boas结构   20.2.2 原型van Emde Boas结构上的操作  20.3 van Emde Boas树及其操作   20.3.1 van Emde Boas树   20.3.2 van Emde Boas树的操作  思考题  本章注记 第21章 用于不相交集合的数据结构  21.1 不相交集合的操作  21.2 不相交集合的链表表示  21.3 不相交集合森林  *21.4 带路径压缩的按秩合并的分析  思考题  本章注记 第六部分 图算法 第22章 基本的图算法  22.1 图的表示  22.2 广度优先搜索  22.3 深度优先搜索  22.4 拓扑排序  22.5 强连通分量  思考题  本章注记 第23章 最小生成树  23.1 最小生成树的形成  23.2 Kruskal算法和Prim算法  思考题  本章注记 第24章 单源最短路径  24.1 Bellman?Ford算法  24.2 有向无环图中的单源最短路径问题  24.3 Dijkstra算法  24.4 差分约束和最短路径  24.5 最短路径性质的证明  思考题  本章注记 第25章 所有结点对的最短路径问题  25.1 最短路径和矩阵乘法  25.2 Floyd?Warshall算法  25.3 用于稀疏图的Johnson算法  思考题  本章注记 第26章 最大流  26.1 流网络  26.2 Ford\Fulkerson方法  26.3 最大二分匹配  26.4 推送重贴标签算法  26.5 前置重贴标签算法  思考题  本章注记 第七部分 算法问题选编 第27章 多线程算法  27.1 动态多线程基础  27.2 多线程矩阵乘法  27.3 多线程归并排序  思考题  本章注记 第28章 矩阵运算  28.1 求解线性方程组  28.2 矩阵求逆  28.3 对称正定矩阵和最小二乘逼近  思考题  本章注记 第29章 线性规划  29.1 标准型和松弛型  29.2 将问题表达为线性规划  29.3 单纯形算法  29.4 对偶性  29.5 初始基本可行解  思考题  本章注记 第30章 多项式与快速傅里叶变换  30.1 多项式的表示  30.2 DFT与FFT  30.3 高效FFT实现  思考题  本章注记 第31章 数论算法  31.1 基础数论概念  31.2 最大公约数  31.3 模运算  31.4 求解模线性方程  31.5 中国余数定理  31.6 元素的幂  31.7 RSA公钥加密系统  31.8 素数的测试  31.9 整数的因子分解  思考题  本章注记 第32章 字符串匹配  32.1 朴素字符串匹配算法  32.2 Rabin\Karp算法  32.3 利用有限自动机进行字符串匹配  32.4 Knuth?Morris?Pratt算法  思考题  本章注记 第33章 计算几何学  33.1 线段的性质  33.2 确定任意一对线段是否相交  33.3 寻找凸包  33.4 寻找最近点对  思考题  本章注记 第34章 NP完全性  34.1 多项式时间  34.2 多项式时间的验证  34.3 NP完全性与可归约性  34.4 NP完全性的证明  34.5 NP完全问题   34.5.1 团问题   34.5.2 顶点覆盖问题   34.5.3 哈密顿回路问题   34.5.4 旅行商问题   34.5.5 子集和问题  思考题  本章注记 第35章 近似算法  35.1 顶点覆盖问题  35.2 旅行商问题  35.2.1 满足三角不等式的旅行商问题  35.2.2 一般旅行商问题  35.3 集合覆盖问题  35.4 随机化和线性规划  35.5 子集和问题  思考题  本章注记 第八部分 附录:数学基础知识 附录A 求和  A.1 求和公式及其性质  A.2 确定求和时间的界  思考题  附录注记 附录B 集合等离散数学内容  B.1 集合  B.2 关系  B.3 函数  B.4 图  B.5 树   B.5.1 自由树   B.5.2 有根树和有序树   B.5.3 二叉树和位置树  思考题  附录注记 附录C 计数与概率  C.1 计数  C.2 概率 C.3 离散随机变量  C.4 几何分布与二项分布  *C.5 二项分布的尾部  思考题  附录注记 附录D 矩阵  D.1 矩阵矩阵运算  D.2 矩阵基本性质  思考题  附录注记
算法导论第三版中文版 pdf高清版 在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。算法导论第三版中文版将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。全书选材经典、内容丰富、结构合理、逻辑清晰,对本科生的数据结构课程和研究生的算法课程都是非常实用的教材,在IT专业人员的职业生涯中,算法导论第三版也是一本案头必备的参考书或工程实践手册。 第3版的主要变化 1、新增了van Emde Boas树和多线程算法,并且将矩阵基础移至附录。 2、修订了递归式(现在称为“分治策略”)那一章的内容,更广泛地覆盖分治法。 3、移除两章很少讲授的内容:二项堆和排序网络。 4、修订了动态规划和贪心算法相关内容。 5、流网络相关材料现在基于边上的全部流。 6、由于关于矩阵基础和Strassen算法的材料移到了其他章,矩阵运算这一章的内容所占篇幅更小。 7、修改了对Knuth-Morris-Pratt字符串匹配算法的讨论。 8、新增100道练习和28道思考题,还更新并补充了参考文献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RIDDLE!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值