#include <string.h>
#include <iostream>
using namespace std;
class Solution {
public:
int longestSubstring(string s, int k) {
if (s.size() < k)
return 0;
int count[26] = { 0 };
for (auto& c : s)
count[c - 'a']++;
bool flag = false;
int res;
for (int i = 0; i < s.size(); i++)
{
if (count[s[i] - 'a'] < k)
{
flag = true;
res = max(longestSubstring(s.substr(0, i), k), longestSubstring(s.substr(i + 1, s.size() - i - 1), k));
break;
}
}
if (!flag)
return s.size();
return res;
}
int max(int a, int b)
{
int max;
if (a > b)
{
max = a;
}
else
{
max = b;
}
return max;
}
};
int main()
{
Solution solution;
string str;
int k;
cin >> str;
cin >> k;
cout << solution.longestSubstring(str, k) << endl;
return 0;
}
输出结果:
算法思想参考:https://blog.csdn.net/qq_41221520/article/details/107371298
思路:
1、首先统计字符串中每个字符出现的次数,使用数组count[26]记录。
2、设置标识符flag=false,表示默认情况下s[i]的次数count[s[i]-‘a’]大于等于k。
3、遍历字符串,
(1) 若字符s[i]出现的次数count[s[i]-‘a’]小于k,则将flag置为true,并且在i处将字符串分为左右两个子串s1=s.substr(0,i),s2=s.substr(i+1,s.size()-i-1)。
(2) 递归调用函数f ff,最少次数=min(f(s1,k),s(s2,k))。
(3) break。避免不必要的循环。
4、若flag=false,说明s中的字符次数都大于等于k,因而最长子串长度即为s.size()。
5、返回递归调用中的最少次数。