百度Paddle学习日记(二)

顾名思义 这波是百度paddle学习的第二天

今天学习的是利用神经网络实现手势识别

数据和部分代码来自:https://aistudio.baidu.com
首先 把任务比作火箭🚀 神经网络就是火箭的发动机 那数据集就是 火箭的油
数据这里就暂时无法提供了 可以去aistudio自取
在这里插入图片描述
这里就是数据集里面已经分好类的图片了,到时候方便我们调用
下面我们来到我们的代码部分:

import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count

from PIL._imaging import display
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

直接把需要的库调用出来
对于飞桨的API查找直接百度搜索飞桨进入官网查看文档即可

# 生成图像列表
data_path = 'data/data23668/Dataset'
character_folders = os.listdir(data_path)
# print(character_folders)
if (os.path.exists('./train_data.list')):
    os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):
    os.remove('./test_data.list')

for character_folder in character_folders:

    with open('./train_data.list', 'a') as f_train:
        with open('./test_data.list', 'a') as f_test:
            if character_folder == '.DS_Store':
                continue
            character_imgs = os.listdir(os.path.join(data_path, character_folder))
            count = 0
            for img in character_imgs:
                if img == '.DS_Store':
                    continue
                if count % 10 == 0:
                    f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                else:
                    f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                count += 1
print('列表已生成')
# 定义训练集和测试集的reader
def data_mapper(sample):
    img, label = sample
    img = Image.open
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值