P3157 [CQOI2011]动态逆序对

题目描述
现在给出 1∼n 的一个排列,按照某种顺序依次删除 m 个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
输入格式
第一行包含两个整数 n和 m,即初始元素的个数和删除的元素个数。
以下 n 行,每行包含一个 1∼n 之间的正整数,即初始排列。
接下来 m 行,每行一个正整数,依次为每次删除的元素。

输出格式
输出包含 m 行,依次为删除每个元素之前,逆序对的个数。

CDQ分治求解动态逆序对,即在有删除操作的情况下求逆序对数,出坐标、数值外,把时间作为第三个维度,即可转换为三维偏序问题。
把从前往后删除转换为从后往前增加,然后每加入一个点,求两部分,一部分坐标小于值大于,另一部分坐标大于值小于,关键点在于第三维,若要形成逆序对,时间这一维必须大于。相当于做了两遍CDQ分治。
参考
有个地方要注意a[0][b[x]].x=a[1][b[x]].x=m+1-i;不是a[0][x].x=a[1][x].x=m+1-i;我调了一晚上这个bug。

#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const ll maxn=1e5+10;

ll Tree[maxn];
ll ans[maxn];
ll b[maxn];

struct node{
    ll x,y,z,ans,id;
}a[2][maxn];

bool cmpx(node a,node b){
    if(a.x<b.x)
        return 1;
    if(a.x>b.x)
        return 0;
    if(a.y<b.y)
        return 1;
    if(a.y>b.y)
        return 0;
    if(a.z<b.z)
        return 1;
    return 0;
}

bool cmpy(node a,node b){
    if(a.y<b.y)
        return 1;
    if(a.y>b.y)
        return 0;
    if(a.z<b.z)
        return 1;
    if(a.z>b.z)
        return 0;
    if(a.x<b.x)
        return 1;
    return 0;
}

void update(ll x,ll val){
    while(x<maxn){
        Tree[x]+=val;
        x+=lowbit(x);
    }
}

ll query(ll x){
    ll sum=0;
    while(x>0){
        sum+=Tree[x];
        x-=lowbit(x);
    }
    return sum;
}

void CDQ(ll l,ll r,ll wc){
    if(l==r){
        return;
    }
    ll mid=(l+r)>>1;
    CDQ(l,mid,wc);
    CDQ(mid+1,r,wc);
    sort(a[wc]+l,a[wc]+mid+1,cmpy);
    sort(a[wc]+mid+1,a[wc]+r+1,cmpy);
    ll j=l;
    for(ll i=mid+1;i<=r;i++){
        while(j<=mid&&a[wc][j].y<a[wc][i].y){
            update(a[wc][j].z,1);
            j++;
        }
        a[wc][i].ans+=query(a[wc][i].z-1);
    }
    for(ll i=l;i<j;i++){
        update(a[wc][i].z,-1);
    }
}

int main(){
    ll n,m;
    scanf("%lld%lld",&n,&m);
    for(ll i=1;i<=n;i++){
        a[0][i].y=i;
        a[1][i].y=n+1-i;
        scanf("%lld",&a[1][i].z);
        b[a[1][i].z]=i;
        a[0][i].z=n+1-a[1][i].z;
        a[0][i].x=a[1][i].x=0;
        a[0][i].ans=a[1][i].ans=0;
    }
    for(ll i=1;i<=m;i++){
        ll x;
        scanf("%lld",&x);
        a[0][b[x]].x=a[1][b[x]].x=m+1-i;
    }
    sort(a[0]+1,a[0]+1+n,cmpx);
    sort(a[1]+1,a[1]+1+n,cmpx);
    CDQ(1,n,0);
    CDQ(1,n,1);
    for(ll i=1;i<=n;i++){
        ans[a[0][i].x]+=a[0][i].ans;
        ans[a[1][i].x]+=a[1][i].ans;
    }
    ans[0]/=2;
    for(ll i=1;i<=m;i++){
        ans[i]+=ans[i-1];
    }
    for(ll i=m;i>=1;i--){
        printf("%lld\n",ans[i]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值