题目描述
现在给出 1∼n 的一个排列,按照某种顺序依次删除 m 个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
输入格式
第一行包含两个整数 n和 m,即初始元素的个数和删除的元素个数。
以下 n 行,每行包含一个 1∼n 之间的正整数,即初始排列。
接下来 m 行,每行一个正整数,依次为每次删除的元素。
输出格式
输出包含 m 行,依次为删除每个元素之前,逆序对的个数。
CDQ分治求解动态逆序对,即在有删除操作的情况下求逆序对数,出坐标、数值外,把时间作为第三个维度,即可转换为三维偏序问题。
把从前往后删除转换为从后往前增加,然后每加入一个点,求两部分,一部分坐标小于值大于,另一部分坐标大于值小于,关键点在于第三维,若要形成逆序对,时间这一维必须大于。相当于做了两遍CDQ分治。
参考
有个地方要注意a[0][b[x]].x=a[1][b[x]].x=m+1-i;不是a[0][x].x=a[1][x].x=m+1-i;我调了一晚上这个bug。
#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const ll maxn=1e5+10;
ll Tree[maxn];
ll ans[maxn];
ll b[maxn];
struct node{
ll x,y,z,ans,id;
}a[2][maxn];
bool cmpx(node a,node b){
if(a.x<b.x)
return 1;
if(a.x>b.x)
return 0;
if(a.y<b.y)
return 1;
if(a.y>b.y)
return 0;
if(a.z<b.z)
return 1;
return 0;
}
bool cmpy(node a,node b){
if(a.y<b.y)
return 1;
if(a.y>b.y)
return 0;
if(a.z<b.z)
return 1;
if(a.z>b.z)
return 0;
if(a.x<b.x)
return 1;
return 0;
}
void update(ll x,ll val){
while(x<maxn){
Tree[x]+=val;
x+=lowbit(x);
}
}
ll query(ll x){
ll sum=0;
while(x>0){
sum+=Tree[x];
x-=lowbit(x);
}
return sum;
}
void CDQ(ll l,ll r,ll wc){
if(l==r){
return;
}
ll mid=(l+r)>>1;
CDQ(l,mid,wc);
CDQ(mid+1,r,wc);
sort(a[wc]+l,a[wc]+mid+1,cmpy);
sort(a[wc]+mid+1,a[wc]+r+1,cmpy);
ll j=l;
for(ll i=mid+1;i<=r;i++){
while(j<=mid&&a[wc][j].y<a[wc][i].y){
update(a[wc][j].z,1);
j++;
}
a[wc][i].ans+=query(a[wc][i].z-1);
}
for(ll i=l;i<j;i++){
update(a[wc][i].z,-1);
}
}
int main(){
ll n,m;
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++){
a[0][i].y=i;
a[1][i].y=n+1-i;
scanf("%lld",&a[1][i].z);
b[a[1][i].z]=i;
a[0][i].z=n+1-a[1][i].z;
a[0][i].x=a[1][i].x=0;
a[0][i].ans=a[1][i].ans=0;
}
for(ll i=1;i<=m;i++){
ll x;
scanf("%lld",&x);
a[0][b[x]].x=a[1][b[x]].x=m+1-i;
}
sort(a[0]+1,a[0]+1+n,cmpx);
sort(a[1]+1,a[1]+1+n,cmpx);
CDQ(1,n,0);
CDQ(1,n,1);
for(ll i=1;i<=n;i++){
ans[a[0][i].x]+=a[0][i].ans;
ans[a[1][i].x]+=a[1][i].ans;
}
ans[0]/=2;
for(ll i=1;i<=m;i++){
ans[i]+=ans[i-1];
}
for(ll i=m;i>=1;i--){
printf("%lld\n",ans[i]);
}
}