实现最大池化
其实就是单调队列的滑动窗口,从一维到二维只是多求了一遍而已。
滑动窗口算法的关键在于用双端队列维护当前窗口内的值和位置,保持值单调,队首位置在窗口以外的移出队列,纸样就可以保证队首一直是当前窗口内的最值,复杂度O(mn)。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e3+10;
int mat[maxn][maxn];
int mat_second[maxn][maxn];
int n,m,k;
int gcd(int x,int y){
return y?gcd(y,x%y):x;
}
int lcm(int x,int y){
return x*y/gcd(x,y);
}
deque<pair<int,int> >dq;
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
mat[i][j]=lcm(i,j);
}
}
for(int i=1;i<=n;i++){
while(!dq.empty())dq.pop_front();
for(int j=1;j<=k;j++){
int x=mat[i][j];
while(!dq.empty()&&dq.back().second<=x){
dq.pop_back();
}
dq.push_back({j,x});
}
mat_second[i][k]=dq.front().second;
for(int j=k+1;j<=m;j++){
int x=mat[i][j];
while(!dq.empty()&&dq.back().second<=x){
dq.pop_back();
}
dq.push_back({j,x});
while(!dq.empty()&&j-dq.front().first>=k)
dq.pop_front();
mat_second[i][j]=dq.front().second;
}
}
ll ans=0;
for(int j=k;j<=m;j++){
while(!dq.empty())dq.pop_front();
for(int i=1;i<=k;i++){
int x=mat_second[i][j];
while(!dq.empty()&&dq.back().second<=x){
dq.pop_back();
}
dq.push_back({i,x});
}
ans+=dq.front().second;
for(int i=k+1;i<=n;i++){
int x=mat_second[i][j];
while(!dq.empty()&&dq.back().second<=x){
dq.pop_back();
}
dq.push_back({i,x});
while(!dq.empty()&&i-dq.front().first>=k)
dq.pop_front();
ans+=dq.front().second;
}
}
printf("%lld\n",ans);
}