[USACO08JAN]牛大赛Cow Contest
题目描述
N (1 ≤ N ≤ 100) cows, conveniently numbered 1…N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1…N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。
输入格式
第1行: 2个用空格隔开的整数:N 和 M
第2…M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为 胜者)
输出格式
第1行: 输出1个整数,表示排名可以确定的奶牛的数目
一道Floyd求传递闭包的经典题目;
首先明白什么是传递闭包:
假如 i 可以直接到 k,k 直接到 j,但是 i 不能直接到 j,但是可以通过 k 作为中间点得到 i 到 j;这样的点就叫传递闭包;
这道题就是把这样的点全部连起来,然后判断每个点是否和其他所有点直接相连,如果相连,说明关系确定;
Floyd不仅可以求多源最短路,还可以求传递闭包,把边权设为1,说明可以相连;
代码:
#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define lson k<<1
#define rson k<<1|1
//ios::sync_with_stdio(false);
using namespace std;
const int N=100010;
const int M=200100;
const LL mod=1e9+7;
int f[110][110];
int n,m;
void floyd(){
for(int k=1;k<=n;k++){
for(int l=1;l<=n;l++){
for(int r=1;r<=n;r++){
if(f[l][k]&&f[k][r]){
f[l][r]=1;
}
}
}
}
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=m;i++){
int p,q;
cin>>p>>q;
f[p][q]=1;//p到q连通
}
floyd();
int ans=0;
for(int i=1;i<=n;i++){
int ok=1;
for(int j=1;j<=n;j++){
if(i==j) continue;
if(f[i][j]==0&&f[j][i]==0){
ok=0;
break;
}
}
if(ok) ans++;
}
cout<<ans<<endl;
return 0;
}