[USACO08JAN]牛大赛Cow Contest(洛谷 P2419)

[USACO08JAN]牛大赛Cow Contest

题目描述

N (1 ≤ N ≤ 100) cows, conveniently numbered 1…N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1…N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。

输入格式

第1行: 2个用空格隔开的整数:N 和 M

第2…M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为 胜者)

输出格式

第1行: 输出1个整数,表示排名可以确定的奶牛的数目


一道Floyd求传递闭包的经典题目;

首先明白什么是传递闭包:

假如 i 可以直接到 k,k 直接到 j,但是 i 不能直接到 j,但是可以通过 k 作为中间点得到 i 到 j;这样的点就叫传递闭包;

这道题就是把这样的点全部连起来,然后判断每个点是否和其他所有点直接相连,如果相连,说明关系确定;

Floyd不仅可以求多源最短路,还可以求传递闭包,把边权设为1,说明可以相连;

代码:

#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define lson k<<1
#define rson k<<1|1
//ios::sync_with_stdio(false);
using namespace std;
const int N=100010;
const int M=200100;
const LL mod=1e9+7;
int f[110][110];
int n,m;
void floyd(){
	for(int k=1;k<=n;k++){
		for(int l=1;l<=n;l++){
			for(int r=1;r<=n;r++){
				if(f[l][k]&&f[k][r]){
					f[l][r]=1;
				}
			}
		}
	}
}
int main(){
	ios::sync_with_stdio(false);
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		int p,q;
		cin>>p>>q;
		f[p][q]=1;//p到q连通 
	}
	floyd();
	int ans=0;
	for(int i=1;i<=n;i++){
		int ok=1;
		for(int j=1;j<=n;j++){
			if(i==j) continue;
			if(f[i][j]==0&&f[j][i]==0){
				ok=0;
				break;
			}
		}
		if(ok) ans++;
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值