小白逛公园
题目描述
在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了。
一开始,小白就根据公园的风景给每个公园打了分-.-。小新为了省事,每次遛狗的时候都会事先规定一个范围,小白只可以选择第a个和第b个公园之间(包括a、b两个公园)选择连续的一些公园玩。小白当然希望选出的公园的分数总和尽量高咯。同时,由于一些公园的景观会有所改变,所以,小白的打分也可能会有一些变化。
那么,就请你来帮小白选择公园吧。
输入格式
第一行,两个整数N和M,分别表示表示公园的数量和操作(遛狗或者改变打分)总数。
接下来N行,每行一个整数,依次给出小白 开始时对公园的打分。
接下来M行,每行三个整数。第一个整数K,1或2。
- K=1表示,小新要带小白出去玩,接下来的两个整数a和b给出了选择公园的范围(1≤a,b≤N)。测试数据可能会出现a>b的情况,需要进行交换;
- K=2表示,小白改变了对某个公园的打分,接下来的两个整数p和s,表示小白对第p个公园的打分变成了s(1≤p≤N)。
其中,1≤N≤500000,1≤M≤100000,所有打分都是绝对值不超过1000的整数。
输出格式
小白每出去玩一次,都对应输出一行,只包含一个整数,表示小白可以选出的公园得分和的最大值。
非常之经典的区间子串问题;
每个结点维护4个变量,区间左端点开始的子串的最大值lx,区间右端点开始的子串的最大值rx,区间子串的最大值mx,区间和w;
更新操作为:
void pp(int k){
tr[k].w=tr[ls].w+tr[rs].w;
tr[k].lx=max(tr[ls].lx,tr[ls].w+tr[rs].lx);
tr[k].rx=max(tr[rs].rx,tr[rs].w+tr[ls].rx);
tr[k].mx=max(max(tr[ls].mx,tr[rs].mx),tr[ls].rx+tr[rs].lx);
}
这个最关键的部分,应该是比较好理解的,画图更加好理解;
还有个非常关键的部分是询问query的时候,不再是返回mx,而是返回树的结点;
因为当你要找的区间在查找时分为左区间和右区间时,直接返回两者mx的最大值,是不一定是最大的,有可能是两者合并,这跟pp操作是一个道理;
所以每次返回结点,然后更pp一样操作;
代码:
#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,LL>
#define ls k<<1
#define rs k<<1|1
#define inf 0x3f3f3f3f
using namespace std;
const int N=500100;
const int M=50100;
const int mod=1e9;
int n,m,a[N];
struct Node{
int l,r,lx,rx,mx,w;
}tr[N*4];
void pp(int k){
tr[k].w=tr[ls].w+tr[rs].w;
tr[k].lx=max(tr[ls].lx,tr[ls].w+tr[rs].lx);
tr[k].rx=max(tr[rs].rx,tr[rs].w+tr[ls].rx);
tr[k].mx=max(max(tr[ls].mx,tr[rs].mx),tr[ls].rx+tr[rs].lx);
}
void build(int l,int r,int k){
tr[k].l=l,tr[k].r=r;
if(l==r){
tr[k].lx=tr[k].mx=tr[k].rx=tr[k].w=a[l];
return;
}
int d=(l+r)>>1;
build(l,d,ls);
build(d+1,r,rs);
pp(k);
}
Node query(int l,int r,int k){
if(tr[k].l>=l&&tr[k].r<=r) return tr[k];//返回结点
int d=(tr[k].l+tr[k].r)>>1;
if(r<=d) return query(l,r,ls);
else if(l>d) return query(l,r,rs);
else{
Node x=query(l,r,ls),y=query(l,r,rs),z;//重点,精髓
z.w=x.w+y.w;
z.lx=max(x.lx,x.w+y.lx);
z.rx=max(y.rx,y.w+x.rx);
z.mx=max(max(x.mx,y.mx),x.rx+y.lx);
return z;
}
}
void update(int pos,int w,int k){
if(tr[k].l==tr[k].r){
tr[k].lx=tr[k].mx=tr[k].rx=tr[k].w=w;
return;
}
int d=(tr[k].l+tr[k].r)>>1;
if(pos<=d) update(pos,w,ls);
else update(pos,w,rs);
pp(k);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,n,1);
for(int i=1;i<=m;i++){
int k;scanf("%d",&k);
if(k==1){
int a,b;scanf("%d%d",&a,&b);
if(a>b) swap(a,b);
printf("%d\n",query(a,b,1).mx);
}
else{
int p,s;scanf("%d%d",&p,&s);
update(p,s,1);
}
}
return 0;
}