递归算法
使用递归算法解决问题应满足下面三个条件
- 需要解决的问题可以转化为一个或多个子问题来求解,而这些子问题的求解方法与原问题完全相同,只是在数量和规模上不同。
- 递归调用的次数必须是有限的。
- 必须有结束递归的条件来终止递归。
典型的递归算法用例
求n!的算法
int fun(int n) {
if (n == 1) {
return 1;
}
else {
return (fun(n - 1) * n);
}
}
汉罗塔问题
1、 通过递归实现汉诺塔问题的求解
设f(n)为将n片圆盘所在塔全部移动到另一塔最少总次数;由递归算法可知:f(1) = 1;当n>1时,f(n) = f(n-1) + 1 + f(n-1)。
f(n) = 把上面n-1片圆盘移动到中间塔最少总次数f(n-1) + 把第n片圆盘移动到目标塔+ 把中间盘的n-1片圆盘移动到目标塔最少总次数为f(n-1)。
由数学计算可得:f(n)=2^n-1。(n>0)。此算法的递归代码实现如下所示:
#include <fstream>
#include <iostream>
#include<time.h>
using namespace std;
void Move(int n,char x,char y)
{
cout<<"把"<<n<<"号从"<<x<<"挪动到"<<y<<endl;
}
void Hannoi(int n,char a,char b,char c)
{
if(n==1)
Move(1,a,c);
else
{
Hannoi(n-1,a,c,b);
Move(n,a,c);
Hannoi(n-1,b,a,c);
}
}
int main()
{
int n;
cout<<"请输入要求解的汉诺塔的阶数:";
cin>>n;
clock_t start,finish;
start = clock();
cout<<"以下是7层汉诺塔的解法:"<<endl;
Hannoi(n,'a','b','c');
cout<<"输出完毕!"<<endl;
finish = clock();
printf("解决此 %d 阶汉诺塔所需的时间为:%.2f ms\n",n,(double)(finish-start));
system("pause");
return 0;
}
2、 通过非递归的思想来实现汉诺塔问题的求解
汉诺塔的非递归算法描述如下:
首先容易证明,当盘子的个数为n时,移动的次数应等于2^n - 1。
一位美国学者发现一种出人意料的方法,只要轮流进行两步操作就可以了。
首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上。
根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
若n为奇数,按顺时针方向依次摆放 A C B。
(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;
若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。
即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘
这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
(3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。
该算法的实现代码如下:
#include <iostream>
#include<time.h>
using namespace std;
// 圆盘的个数最多为64
const int MAX = 64;
// 用来表示每根柱子的信息
struct st {
int s[MAX]; //柱子上的圆盘存储情况
int top; //栈顶,用来最上面的圆盘
char name; //柱子的名字,可以是A,B,C中的一个
int Top()//取栈顶元素
{
return s[top];
}
int Pop()//出栈
{
return s[top--];
}
void Push(int x)//入栈
{
s[++top] = x;
}
};
long Pow(int x, int y); //计算x^y
void Creat(st ta[], int n); //给结构数组设置初值
void Hannuota(st ta[], long max); //移动汉诺塔的主要函数
int main(void)
{
clock_t start,finish;
int n;
cout<<"请输入汉诺塔的阶数:";
cin >> n; //输入圆盘的个数
start = clock();
st ta[3]; //三根柱子的信息用结构数组存储
Creat(ta, n); //给结构数组设置初值
long max = Pow(2, n) - 1;//动的次数应等于2^n - 1
Hannuota(ta, max);//移动汉诺塔的主要函数
finish = clock();
printf("解决此 %d 阶汉诺塔所需的时间为:%.2f ms\n",n,(double)(finish-start));
system("pause");
return 0;
}
void Creat(st ta[], int n)
{
ta[0].name = 'A';
ta[0].top = n-1;
//把所有的圆盘按从大到小的顺序放在柱子A上
for (int i=0; i<n; i++)
ta[0].s[i] = n - i;
//柱子B,C上开始没有没有圆盘
ta[1].top = ta[2].top = 0;
for (int i=0; i<n; i++)
ta[1].s[i] = ta[2].s[i] = 0;
//若n为偶数,按顺时针方向依次摆放 A B C
if (n%2 == 0)
{
ta[1].name = 'B';
ta[2].name = 'C';
}
else //若n为奇数,按顺时针方向依次摆放 A C B
{
ta[1].name = 'C';
ta[2].name = 'B';
}
}
long Pow(int x, int y)
{
long sum = 1;
for (int i=0; i<y; i++)
sum *= x;
return sum;
}
void Hannuota(st ta[], long max)
{
int k = 0; //累计移动的次数
int i = 0;
int ch;
while (k < max)
{
//按顺时针方向把圆盘1从现在的柱子移动到下一根柱子
ch = ta[i%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " <<
"Move disk " << ch << " from " <<ta[i%3].name <<
" to " << ta[(i+1)%3].name << endl;
i++;
//把另外两根柱子上可以移动的圆盘移动到新的柱子上
if(k < max)
{
//把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘
if (ta[(i+1)%3].Top() == 0 ||
ta[(i-1)%3].Top() > 0 &&
ta[(i+1)%3].Top() > ta[(i-1)%3].Top())
{
ch = ta[(i-1)%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << "Move disk"
<< ch << " from " << ta[(i-1)%3].name
<< " to " << ta[(i+1)%3].name << endl;
}
else
{
ch = ta[(i+1)%3].Pop();
ta[(i-1)%3].Push(ch);
cout << ++k << ": " << "Move disk"
<< ch << " from " << ta[(i+1)%3].name
<< " to " << ta[(i-1)%3].name << endl;
}
}
}
}
归纳起来
递归调用的实现是分两步进行的
- 第一步是分解过程,即用递归体将“大问题”分解成“小问题”,知道递归出口为止
- 然后进行第二步的求值过程,即已知“小问题”,计算“大问题”
Fibonacci数列
Fibonacci数列的定义为:
Fib(n) = 1 ,n = 1时
Fib(n) = 1 ,n = 2时
Fib(n) = Fib(n-1) + Fib(n-2),n>2时
对应的递归算法如下
int Fib(int n){
if(n == 1 || n == 2)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}
计算算法复杂度的主项定理
设计一个算法释放单链表L中的所有结点
对应的递归模型如下:
f(L) ≡ 不做任何事情, 当L = NULL时
f(L) ≡ f(L -> next);释放*L结点 其他情况
其中,“≡”表示功能等价关系。
void Relesae(LinkList *L){
if(L != NULL){
Relesae(L->next);
free(L);
}
}
设计一个递归算法释放二叉树b中所有的结点
void Relase(BTNode *b){
if(b != NULL){
Relase(b->lchild);
Relase(b->rchild);
free(b);
}
}