递归调用:汉罗塔问题,斐波那契数列,计算复杂度主项定理等问题

递归算法

使用递归算法解决问题应满足下面三个条件

  1. 需要解决的问题可以转化为一个或多个子问题来求解,而这些子问题的求解方法与原问题完全相同,只是在数量和规模上不同。
  2. 递归调用的次数必须是有限的。
  3. 必须有结束递归的条件来终止递归。

典型的递归算法用例

求n!的算法

int fun(int n) {
	if (n == 1) {
		return 1;
	}
	else {
		return (fun(n - 1) * n);
	}
}

汉罗塔问题

1、 通过递归实现汉诺塔问题的求解

设f(n)为将n片圆盘所在塔全部移动到另一塔最少总次数;由递归算法可知:f(1) = 1;当n>1时,f(n) = f(n-1) + 1 + f(n-1)。

f(n) = 把上面n-1片圆盘移动到中间塔最少总次数f(n-1) + 把第n片圆盘移动到目标塔+ 把中间盘的n-1片圆盘移动到目标塔最少总次数为f(n-1)。

由数学计算可得:f(n)=2^n-1。(n>0)。此算法的递归代码实现如下所示:


#include <fstream>
#include <iostream>
#include<time.h>
using namespace std;

void Move(int n,char x,char y)
{
    cout<<"把"<<n<<"号从"<<x<<"挪动到"<<y<<endl;
}

void Hannoi(int n,char a,char b,char c)
{
    if(n==1)
        Move(1,a,c);
    else
    {
        Hannoi(n-1,a,c,b);
        Move(n,a,c);
        Hannoi(n-1,b,a,c);
    }
}

int main()
{
    int n;
    cout<<"请输入要求解的汉诺塔的阶数:";
    cin>>n;
    clock_t start,finish;
    start = clock();
    cout<<"以下是7层汉诺塔的解法:"<<endl;
    Hannoi(n,'a','b','c');
    cout<<"输出完毕!"<<endl;
    finish = clock();
    printf("解决此 %d 阶汉诺塔所需的时间为:%.2f ms\n",n,(double)(finish-start));
    system("pause");
    return 0;
}

2、 通过非递归的思想来实现汉诺塔问题的求解

汉诺塔的非递归算法描述如下:

首先容易证明,当盘子的个数为n时,移动的次数应等于2^n - 1。

一位美国学者发现一种出人意料的方法,只要轮流进行两步操作就可以了。

首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上。

根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;

若n为奇数,按顺时针方向依次摆放 A C B。

(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;

若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。

(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。

即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘

这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。

(3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。

该算法的实现代码如下:


#include <iostream>
#include<time.h>
using namespace std;
// 圆盘的个数最多为64
const int MAX = 64;
// 用来表示每根柱子的信息
struct st {
     int s[MAX]; //柱子上的圆盘存储情况
     int top; //栈顶,用来最上面的圆盘
     char name; //柱子的名字,可以是A,B,C中的一个
     int Top()//取栈顶元素
     {
         return s[top];
     }
     int Pop()//出栈
     {
           return s[top--];
     }
     void Push(int x)//入栈
     {
           s[++top] = x;
     }
};

long Pow(int x, int y); //计算x^y
void Creat(st ta[], int n); //给结构数组设置初值
void Hannuota(st ta[], long max); //移动汉诺塔的主要函数
int main(void)
{
     clock_t start,finish;
     int n;
     cout<<"请输入汉诺塔的阶数:";
     cin >> n; //输入圆盘的个数
     start = clock();
     st ta[3]; //三根柱子的信息用结构数组存储
     Creat(ta, n); //给结构数组设置初值
     long max = Pow(2, n) - 1;//动的次数应等于2^n - 1
     Hannuota(ta, max);//移动汉诺塔的主要函数
     finish = clock();
     printf("解决此 %d 阶汉诺塔所需的时间为:%.2f ms\n",n,(double)(finish-start));
     system("pause");
     return 0;
}
void Creat(st ta[], int n)
{
     ta[0].name = 'A';
     ta[0].top = n-1;
    //把所有的圆盘按从大到小的顺序放在柱子A上
     for (int i=0; i<n; i++)
           ta[0].s[i] = n - i;
     //柱子B,C上开始没有没有圆盘
     ta[1].top = ta[2].top = 0;
     for (int i=0; i<n; i++)
           ta[1].s[i] = ta[2].s[i] = 0;
    //若n为偶数,按顺时针方向依次摆放 A B C
     if (n%2 == 0)
     {
           ta[1].name = 'B';
           ta[2].name = 'C';
     }
     else  //若n为奇数,按顺时针方向依次摆放 A C B
     {
           ta[1].name = 'C';
           ta[2].name = 'B';
     }
}

long Pow(int x, int y)
{
     long sum = 1;
     for (int i=0; i<y; i++)
           sum *= x;
     return sum;
}

void Hannuota(st ta[], long max)
{
    int k = 0; //累计移动的次数
    int i = 0;
    int ch;
    while (k < max)
    {
    //按顺时针方向把圆盘1从现在的柱子移动到下一根柱子
    ch = ta[i%3].Pop();
    ta[(i+1)%3].Push(ch);
    cout << ++k << ": " <<
        "Move disk " << ch << " from " <<ta[i%3].name <<
        " to " << ta[(i+1)%3].name << endl;
     i++;
     //把另外两根柱子上可以移动的圆盘移动到新的柱子上
     if(k < max)
     {    
     //把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘
         if (ta[(i+1)%3].Top() == 0 ||
             ta[(i-1)%3].Top() > 0 && 
             ta[(i+1)%3].Top() > ta[(i-1)%3].Top())
         {
             ch =  ta[(i-1)%3].Pop();
             ta[(i+1)%3].Push(ch);
             cout << ++k << ": " << "Move disk"
             << ch << " from " << ta[(i-1)%3].name
             << " to " << ta[(i+1)%3].name << endl;
         }
         else
         {
             ch =  ta[(i+1)%3].Pop();
             ta[(i-1)%3].Push(ch);
             cout << ++k << ": " << "Move disk"
                  << ch << " from " << ta[(i+1)%3].name
                  << " to " << ta[(i-1)%3].name << endl;
         }
      }
    }
}

归纳起来

递归调用的实现是分两步进行的
  • 第一步是分解过程,即用递归体将“大问题”分解成“小问题”,知道递归出口为止
  • 然后进行第二步的求值过程,即已知“小问题”,计算“大问题”

Fibonacci数列

Fibonacci数列的定义为:
Fib(n) = 1 ,n = 1时
Fib(n) = 1 ,n = 2时
Fib(n) = Fib(n-1) + Fib(n-2),n>2时

对应的递归算法如下

int Fib(int n){
	if(n == 1 || n == 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}

计算算法复杂度的主项定理

在这里插入图片描述
在这里插入图片描述

设计一个算法释放单链表L中的所有结点

对应的递归模型如下:
f(L) ≡ 不做任何事情,                 当L = NULL时
f(L) ≡ f(L -> next);释放*L结点      其他情况
其中,“≡”表示功能等价关系。
void Relesae(LinkList *L){
	if(L != NULL){
		Relesae(L->next);
		free(L);
	}
}

设计一个递归算法释放二叉树b中所有的结点

void Relase(BTNode *b){
	if(b != NULL){
		Relase(b->lchild);
		Relase(b->rchild);
		free(b);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值