对于通用目标检测的四个著名的数据集

        PASCAL VOC  是一项多年努力,致力于创建和维护一系列用于分类和对象检测的基准数据集,开创了以年度竞赛形式对识别算法进行标准化评估的先例。从 2005 年的四个类别开始,数据集已增加到日常生活中常见的 20 个类别。自 2009 年以来,图像的数量每年都在增加,但保留了所有以前的图像,以便逐年比较测试结果。由于 ImageNet、MS COCO 和 Open Images 等更大数据集的可用性,PASCAL VOC 逐渐过时。

        ILSVRC,即 ImageNet 大规模视觉识别挑战赛 ,源自 ImageNet,将 PASCAL VOC 的标准化训练和检测算法评估目标在对象类和图像的数量上扩大了一个数量级以上。 ImageNet1000 是 ImageNet 图像的子集,具有 1000 个不同的对象类别和总共 120 万张图像,已修复为 ILSVRC 图像分类挑战提供标准化基准。

        MS COCO 是对 ImageNet 批评的回应,即其数据集中的对象往往很大且居中,这使得 ImageNet 数据集在现实世界场景中不典型。为了推动更丰富的图像理解,研究人员创建了 MS COCO 数据库,其中包含复杂的日常场景,其中包含自然背景中的常见对象,更接近现实生活,其中使用完全分割的实例标记对象以提供更准确的检测器评估。 COCO 对象检测挑战具有两个对象检测任务:使用边界框输出或对象实例分割输出。

COCO 引入了三个新挑战: 1. 它包含范围广泛的对象,包括高比例的小对象;

                                             2. 对象不太具有标志性,处于杂乱或严重遮挡之中;

                                              3. 评估指标鼓励更准确的对象定位。

就像当时的 ImageNet 一样,MS COCO 已成为当今对象检测的标准。

        OICOD(开放图像挑战对象检测)源自 Open Images V4(现在是 2019 年的 V5),这是目前最大的公开可用的对象检测数据集。 OICOD 与以前的大规模对象检测数据集如 ILSVRC 和 MS COCO 不同,不仅在类、图像、边界框注释和实例分割掩码注释的数量显着增加方面,而且在注释过程方面也有所不同。在 ILSVRC 和 MS COCO 中,数据集中所有类的实例都被详尽地注释,而对于 Open Images V4,分类器被应用于每个图像,并且只有那些得分足够高的标签被发送用于人工验证。因此,在 OICOD 中,仅对人工确认的正标签的对象实例进行注释。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值