【每日算法 && 数据结构(C++)】—— 01 | 平方值去重统计(解题思路STL法,双指针法、流程图、代码片段)

文章介绍了如何计算整数数组中所有数平方值的不同取值数量。通过使用STL的集合(Set)来存储不同平方值,以及双指针法对数组排序后进行比较,两种方法均能在O(n)或O(nlogn)的时间复杂度内解决问题,其中双指针法需先进行排序。
摘要由CSDN通过智能技术生成


在这里插入图片描述

“Success is not final, failure is not fatal: It is the courage to continue that counts.” - Winston Churchill

(成功并非终点,失败并非致命:真正重要的是继续前行的勇气 - 温斯顿·丘吉尔)

01 | 👑 题目描述

给你一个整数数组,数组中的数可以是正数、负数、零,请实现一个函数,返回这个数组中所有数的平方值中有多少种不同的取值

对于这个题目的理解是,给定一个整数数组,我们需要找出数组中所有数的平方值中有多少种不同的取值。换句话说,我们需要统计数组中平方值的不同取值的数量。

02 | 🔋 解题思路

STL法

为了解决这个问题,我们可以使用一个集合(Set)来存储平方值的不同取值。我们遍历整数数组中的每个数,并计算其平方值。然后,将平方值添加到集合中。由于集合的特性是不允许重复元素,所以它只会保存不同的平方值。最后,我们返回集合的大小,即不同平方值的数量。

例如,对于输入数组 [1, 2, -3, 2, 0, -1, 3],经过计算得到的平方值数组是 [1, 4, 9, 4, 0, 1, 9]。将这些平方值添加到集合中,得到的集合是 {0, 1, 4, 9},其中有4个不同的平方值。因此,最终结果就是 4。

这样的解题思路可以确保我们只计算不同平方值的数量,而不会重复计算相同的平方值。

  • 具体解题思路如下

    1. 创建一个空集合(set)来存储平方值的不同取值。

    2. 遍历整数数组中的每个数。

    3. 对于每个数,计算其平方值。

    4. 将平方值添加到集合中。由于集合的特性是不允许重复元素,所以只会保存不同的平方值。

    5. 最后,返回集合的大小,即不同平方值的数量。

  • 流程概括如下

    1. 创建一个空的集合,用来存储不同平方值。

    2. 遍历整数数组中的每个数。

      a. 计算当前数的平方值。

      b. 将平方值添加到集合中。

    3. 返回集合的大小,即不同平方值的数量。

在这里插入图片描述

  • 时间 && 空间复杂度
    • 时间复杂度
      遍历数组并计算每个数的平方值需要 O(n) 的时间复杂度,其中 n 是数组的长度。
      添加平方值到集合中的操作需要 O(1) 的时间复杂度。
      因此,整个算法的时间复杂度为 O(n)
    • 空间复杂度
      创建了一个集合 uniqueSquares 来存储不同的平方值。
      平方值的数量最多为数组的长度 n,所以集合 uniqueSquares 的大小最大为 n。
      因此,整个算法的空间复杂度为 O(n)

双指针法

参考STL法的思路,只要保证返回结果中的平方值都是唯一的即可,那么就可以采用排序和双指针法进行解题。

  • 具体的解题流程

    1. 对整数数组进行排序;

    2. 创建一个变量 count,初始值为 0。

    3. 设置两个指针,left 指向数组的开头,right 指向数组的末尾。

    4. 当 left <= right 时,执行以下步骤:

      a. 计算指针 left 指向的数的平方值 squareLeft。

      b. 计算指针 right 指向的数的平方值 squareRight。

      c. 如果 squareLeft 等于 squareRight,表示找到了一个新的平方值,将 count 加 1,并同时将 left 和 right 向内缩小一个位置。

      d. 如果 squareLeft 大于 squareRight,说明 left 指向的数的平方值较大,将 count 加 1,并将 left 向内缩小一个位置。

      e. 如果 squareLeft 小于 squareRight,说明 right 指向的数的平方值较大,将 count 加 1,并将 right 向内缩小一个位置。

    5. 返回 count,即不同平方值的数量。

在这里插入图片描述

  • 时间 && 空间复杂度
    • 时间复杂度
      对整数数组进行排序的时间复杂度为 O(n log n),其中 n 是数组的长度。
      然后,使用双指针遍历数组的过程最多需要 O(n) 的时间复杂度,其中 n 是数组的长度。
      因此,整个算法的时间复杂度为 O(n log n)
    • 空间复杂度
      排序算法通常需要使用 O(log n) 的额外空间,其中 n 是数组的长度。因此,排序过程的空间复杂度为 O(log n)。
      除了排序过程,只使用了常量级别的额外空间来存储变量和指针。
      因此,整个算法的空间复杂度为 O(log n)

03 | 🧢 代码片段

STL法

#include <iostream>
#include <vector>
#include <unordered_set>

int countUniqueSquares(std::vector<int>& arr) {
    std::unordered_set<int> squares; // 创建一个空集合来存储平方值的不同取值

    for (int num : arr) {
        int square = num * num; // 计算平方值
        squares.insert(square); // 将平方值添加到集合中
    }

    return squares.size(); // 返回集合的大小,即不同平方值的数量
}

int main() {
    // 测试样例
    std::vector<int> arr = {-4, -2, -1, 0, 1, 3, 5};
    int result = countUniqueSquares(arr);
    std::cout << "(STL法)不同平方值的数量为: " << result << std::endl;
    
    return 0;
}

在这里插入图片描述

双指针法

#include <iostream>
#include <vector>
#include <algorithm>

int countUniqueSquares(std::vector<int>& arr) {
    // 对数组进行排序,按照绝对值的大小进行排序
    std::sort(arr.begin(), arr.end(), [](int a, int b) {
        return std::abs(a) < std::abs(b);
    });

    int count = 0; // 记录不同平方值的数量

    int left = 0; // 左指针
    int right = arr.size() - 1; // 右指针

    while (left <= right) {
        if (arr[left] >= 0) {
            // 计算平方值,并将右指针往左移动
            count++;
            right--;
        } else if (arr[right] < 0) {
            // 计算平方值,并将左指针往右移动
            count++;
            left++;
        } else {
            // arr[left] < 0 且 arr[right] >= 0,比较平方值,根据大小移动指针
            if (arr[left] * arr[left] != arr[right] * arr[right]) {
                count++;
            }
            left++;
            right--;
        }
    }

    return count;
}

int main() {
    std::vector<int> arr = {-4, -2, -1, 0, 1, 3, 5};
    int result = countUniqueSquares(arr);
    std::cout << "(双指针发)不同平方值的数量为: " << result << std::endl;
    
    return 0;
}

在这里插入图片描述

在这里插入图片描述

各位大佬点点关注,点赞,收藏,有空的时候再回来看看,谢谢
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ltd Pikashu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值