十大算法之普里姆算法

在这里插入图片描述在这里插入图片描述普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
普利姆的算法如下:

设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.

在这里插入图片描述

public class PrimAlgorithm {

    public static void main(String[] args) {
        char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] weight = new int[][]{
                {10000, 5, 7, 10000, 10000, 10000, 2},
                {5, 10000, 10000, 9, 10000, 10000, 3},
                {7, 10000, 10000, 10000, 8, 10000, 10000},
                {10000, 9, 10000, 10000, 10000, 4, 10000},
                {10000, 10000, 8, 10000, 10000, 5, 4},
                {10000, 10000, 10000, 4, 5, 10000, 6},
                {2, 3, 10000, 10000, 4, 6, 10000},};
        int verxs = data.length;
        Graph graph = new Graph(verxs, data, weight);
        graph.show();
        graph.prim(0);
    }
}


class Graph {
    int verxs;
    char[] data;
    int[][] weight;

    public Graph(int verxs, char[] data, int[][] weight) {
        this.verxs = verxs;
        this.data = data;
        this.weight = weight;
    }

    public void show() {
        for (int i = 0; i < weight.length; i++) {
            System.out.println(Arrays.toString(weight[i]));
        }
    }

    public void prim(int v) {
        int[] visited = new int[verxs];
        int h1 = -1;
        int h2 = -1;
        int minWeight = 10000;
        visited[v] = 1;
        // 有verxs个顶点,prim算法结束后有verxs-1条边,所以从1开始
        for (int i = 1; i < verxs; i++) {
            // j表示已经访问的节点
            for (int j = 0; j < verxs; j++) {
                // k表示未访问的节点
                for (int k = 0; k < verxs; k++) {
                    // 寻找已访问和未访问节点之间权值最小的边
                    if (visited[j] == 1 && visited[k] == 0 && weight[j][k] < minWeight) {
                        minWeight = weight[j][k];
                        h1 = j;
                        h2 = k;
                    }
                }
            }
            // 找到一条边最小
            System.out.println("<" + data[h1] + "," + data[h2] + ">" + ",weight=" + weight[h1][h2]);
            visited[h2] = 1;
            minWeight = 10000;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值