NC25147——金币馅饼

链接:https://ac.nowcoder.com/acm/problem/25147
来源:牛客网

题目描述
最近,奶牛们热衷于把金币包在面粉里,然后把它们烤成馅饼。第i块馅饼中含有Ni(1<=Ni<=25)块金币,并且,这个数字被醒目地标记在馅饼表面。
奶牛们把所有烤好的馅饼在草地上排成了一个R行(1<=R<=100)C列(1<=C<=100)的矩阵。你现在站在坐标为(1,1)的馅饼边上,当然,你可以拿到那块馅饼里的所有金币。你必须从现在的位置,走到草地的另一边,在坐标为(R,C)的馅饼旁边停止走动。每做一次移动,你必须走到下一列的某块馅饼旁边,并且,行数的变动不能超过1(也就是说,如果现在你站在坐标为(r,c)的馅饼边上,下一步你可以走到坐标为(r-1,c+1),(r,c+1),或者(r+1,c+1)的馅饼旁边)。当你从一块馅饼边经过,你就可以拿走馅饼里所有的金币。当然啦,你一定不会愿意因半路离开草地而失去唾手可得的金币,但,最终你一定得停在坐标为(R,C)的馅饼旁边。
现在,你拿到了一张标记着馅饼矩阵中,每一块馅饼含金币数量的表格。那么,按照规则,你最多可以拿到多少金币呢?
比方说,奶牛们把馅饼排成如下的矩阵,矩阵中的数字表示该位置的馅饼中含金币的数量:

起点-> 6 5 3 7 9 2 7
2 4 3 5 6 8 6
4 9 9 9 1 5 8 <-终点
以下是一条合法的路线:

起点-> 6 5 3 7 9 2 7

2 4 3 5 6 8 6
\ /
4 9 9-9 1 5-8 <-终点
按上述的路线进行走动,一共可以获得6+4+9+9+6+5+8=47个金币。按照规则,在这个矩阵中最多可以得到50个金币,路线如下图所示:

起点-> 6 5 3 7 9 2 7

2 4 3 5 6-8 6
\ /
4 9 9-9 1 5 8 <-终点
(请复制到记事本中用等宽字体查看)

输入描述:
第1行: 两个用空格隔开的整数,R和C
第2…R+1行: 每行包含C个用空格隔开的正整数,依次表示一行中从左往右各个馅饼里金币的数量

输出描述:
第1行: 输出一个正整数,表示你所能收集到的最大金币数目

示例1
输入

3 7
6 5 3 7 9 2 7
2 4 3 5 6 8 6
4 9 9 9 1 5 8

输出

50

思路:动态规划算法。求停在坐标为(R,C)的馅饼时可以得到的最大金币的数量,可以先求停在c-1列时获得的最大金币数,以此类推。要注意“行数的变动不能超过1”这个条件,所以有些顶点不能到达。

ac代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int r,c;
    while(cin>>r>>c)
    {
        //coin存储金币数量的表格,sum存储到达该点所能得到的最多金币数
        int coin[r+1][c+1],sum[r+2][c+2];
        memset(sum,0,sizeof(sum));
        memset(coin,0,sizeof(coin));
        for(int i=1; i<=r; i++)
            for(int j=1; j<=c; j++)
                cin>>coin[i][j];
        sum[1][1]=coin[1][1];
        for(int j=2; j<=c; j++)
        {
            for(int i=1; i<=r; i++)
            {
                //这条if语句是判断能否到达该点,若这三个点都为0,则点(i,j)不能到达,所得金币数为0;
                if(sum[i-1][j-1]||sum[i][j-1]||sum[i+1][j-1])
                    sum[i][j]=max(max(sum[i-1][j-1],sum[i][j-1]),sum[i+1][j-1])+coin[i][j];
            }
        }
        cout<<sum[r][c]<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值