2021.11.28
所有递归问题都可以抽象为二叉树的遍历。
1、二叉树的前序遍历
给你二叉树的根节点 root
,返回它节点值的 前序 遍历。
示例 1:
输入:root = [1,null,2,3]
输出:[1,2,3]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [1]
输出:[1]
思路
递归
临界条件:root = null
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
recur(root,res);
return res;
}
void recur(TreeNode root,List<Integer> res) {
if (root == null) {
return;
}
res.add(root.val);
recur(root.left,res);
recur(root.right,res);
}
}
迭代
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
TreeNode node = root;
if (root == null) {
return res;
}
//当栈不为空,或节点不为null
while (!stack.isEmpty() || node != null) {
while (node != null) {
//一个节点一个节点的压栈,每压一个,就存入,导致根节点都是最先存入的。
res.add(node.val);
stack.push(node);
node = node.left;
}
//当node为null时,到达最左叶子节点,这时出栈,依次向上寻找右子节点。
node = stack.pop();
node = node.right;
}
return res;
}
}
2、二叉树的中序遍历
递归
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
recur(root,res);
return res;
}
void recur(TreeNode root,List<Integer> res) {
if (root == null) {
return;
}
recur(root.left,res);
res.add(root.val);
recur(root.right,res);
}
}
迭代
中序遍历,只需要修改获取res的位置即可,全部压栈之后,一个一个出栈的时候再一个一个加入到res,这样就能保证根节点在左右节点中间被读取了。
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
TreeNode node = root;
while (!stack.isEmpty() || node != null) {
while (node != null) {
stack.push(node);
node = node.left;
}
node = stack.pop();
res.add(node.val);
node = node.right;
}
return res;
}
}
3、二叉树的后序遍历
递归
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
recur(root,res);
return res;
}
void recur(TreeNode root,List<Integer> res) {
if (root == null) {
return;
}
recur(root.left,res);
recur(root.right,res);
res.add(root.val);
}
}
迭代(反复咀嚼)
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
Deque<TreeNode> stack = new LinkedList<>();//辅助栈
TreeNode prev = null;//用来记录根节点的右子节点是否已经记录
while (!stack.isEmpty() || root != null) {
//与中序遍历相同,一直找到最左叶子节点
while (root != null) {
stack.push(root);
root = root.left;
}
//一个一个出栈
root = stack.pop();
//若右子节点为空,或者右子节点已被记录
//为空的时候,记录
//右子节点已被记录,这下轮到最后的根节点进行记录。记录完毕,将根节点指向null
if (root.right == null || root.right == prev) {
res.add(root.val);
prev = root;
root = null;
} else {
//右子节点未被记录,迭代记录右子节点,将根节点入队。
stack.push(root);
root = root.right;
}
}
return res;
}
}
4、二叉树的层序遍历
思路
维护一个队列,开始将根节点入队,然后记录队列大小这个大小就是每层的节点数,for循环根据每层的节点数,记录这一层的节点,并且将这一层的每个节点的子节点全部入队,当循环结束,一层就遍历完毕了。
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) {
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> floorRes = new ArrayList<>();
for (int i = 0; i < size ; i++) {
root = queue.poll();
floorRes.add(root.val);
if (root.left != null) {
queue.offer(root.left);
}
if (root.right != null) {
queue.offer(root.right);
}
}
res.add(floorRes);
}
return res;
}
}
``