E. Another Filling the Grid 计数dp

E. Another Filling the Grid
题意:要求n * n 个方格内,要求每行每列都有1,问你有多少种填法?
题解:设dp[i][j]代表前i行,有j列存在数字1的方案数,对于下一个状态dp[i+1][p];
我们分为两种情况讨论:

  1. if ( j == p ) 那么我们j列中必须要填一个数字1,j列的其他位置随便填,那么方案数位 k^ j - (k-1) ^ j ,剩余n-j个位置除1以外随便填,方案树为 (k-1) ^ (n-j);
  2. if ( j ! = p ) 那么就必然要新加入 p - j 列为1 的列数,那么j列数字随便填,方案数为 k^j,那么新加入的 p - j 的方案数为 从n-p中选p-j的方案数,用组合来算,还有剩余n-p个位置除1以外随便填。
    最后 dp [i][j] += dp[i-1][p] * 方案数
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod = 1e9+7;
ll dp[350][350],P1[400],P2[400],p[400],inv[400];
ll ksm(ll a,ll b)
{
    ll res = 1;
    while(b){
        if(b&1) res = res*a%mod;
        a = a*a%mod;
        b/=2;
    }
    return res;
}
void add(ll & x,ll y)
{
     x += y;
     if(x>= mod) x -= mod;
     if(x<0) x+= mod;
}
ll C(ll n,ll m)
{
    return p[n] * inv[m] % mod * inv[n-m] % mod;
}
int main()
{
    int n,k; scanf("%d%d",&n,&k);
    P1[0] = 1 , P2[0] = 1;
    for(int i=1;i<=n;i++) {
        P1[i] = P1[i-1] * k % mod;
        P2[i] = P2[i-1] * (k-1) % mod;
    }
    p[0] = 1,inv[0] = 1;
    for(int i=1;i<=300;i++)
    p[i] = p[i-1] * i % mod, inv[i] = ksm(p[i],mod-2);
    for(int i=1;i<=n;i++) dp[1][i] = C(n,i) * P2[n-i] % mod;
    for(int i=2;i<=n;i++)
        for(int j=1;j<=n;j++)
         for(int p=j;p<=n;p++)
    {
          ll res ;
         if(p==j)  res = (P1[p] - P2[p] + mod ) % mod * P2[n-p] % mod;
         else res = C(n-j,p-j) * P1[j] % mod * P2[n-p] % mod;
         add(dp[i][p],dp[i-1][j]*res%mod);
    }
    printf("%lld\n",dp[n][n]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值