【2019正睿金华集训】0728总结(概率期望)

期望概念学习

上午的学习还算好,听得懂,但是下午老师讲的挺快,题目难度增大,有点懵。要认真理解,勤做笔记很重要。

基础概念:

随机变量:有多种可能的取值的变量
P ( A ) P(A) P(A):事件A发生的概率
E ( X ) E(X) E(X):随机变量X的期望值, E ( X ) = S u m [ P ( X = i ) ∗ i ] E(X)=Sum[P(X=i)*i] E(X)=Sum[P(X=i)i]独立事件:互相不影响的事件,满足以下性质: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ; E ( A B ) = E ( A ) E ( B ) E(AB)=E(A)E(B) E(AB)=E(A)E(B)

P ( X + Y = K ) P(X+Y=K) P(X+Y=K)的含义并非两件事件同时发生,X+Y重新形成一个新的随机变量Z,那么 P ( X + Y = K ) P(X+Y=K) P(X+Y=K)= P ( Z = K ) P(Z=K) P(Z=K)= ∑ i P ( X = i 且 Y = K − i ) \sum_{i}P(X=i且Y=K-i) iP(X=iY=Ki)

同理 P ( X Y = K ) = P ( Z = K ) = P(XY=K)=P(Z=K)= P(XY=K)=P(Z=K)= ∑ i P ( X = i 且 Y = K i ) \sum_{i}P(X=i且Y={K\over{i}}) iP(X=iY=iK)

常用公式:

当0<x<1时,有
1. ∑ i = 0 n x i = 1 − x n + 1 1 − x \sum^n_{i=0}x^i={1-x^{n+1}\over{1-x}} i=0nxi=1x1xn+1

2. ∑ i = 0 ∞ x i = 1 1 − x \sum^\infty_{i=0}x^i={1\over{1-x}} i=0xi=1x1

期望的线性性
E [ X + Y ] = E [ X ] + E [ Y ] E[X+Y]=E[X]+E[Y] E[X+Y]=E[X]+E[Y]
PS:该公式运用广泛,对于所有事件均成立

证明如下:

E [ X + Y ] E[X+Y] E[X+Y]

= ∑ i ∑ j ( i + j ) P ( X = i , Y = j ) \sum_{i}\sum_j(i+j)P(X=i,Y=j) ij(i+j)P(X=i,Y=j)

= ∑ i ∑ j ( i ) P ( X = i , Y = j ) + ∑ i ∑ j ( j ) P ( X = i , Y = j ) \sum_{i}\sum_j(i)P(X=i,Y=j)+\sum_{i}\sum_j(j)P(X=i,Y=j) ij(i)P(X=i,Y=j)+ij(j)P(X=i,Y=j)

= ∑ i i ∑ j P ( X = i , Y = j ) + ∑ i j ∑ j P ( X = i , Y = j ) \sum_{i}i\sum_jP(X=i,Y=j)+\sum_i j\sum_j P(X=i,Y=j) iijP(X=i,Y=j)+ijjP(X=i,Y=j)-------------------1

= ∑ i i P ( X = i ) + ∑ j j P ( Y = j ) \sum_i i P(X=i)+\sum_j j P(Y=j) iiP(X=i)+jjP(Y=j)--------------------------2

= E [ X ] + E [ Y ] E[X]+E[Y] E[X]+E[Y]

解释:1到2的转换,前一项 ∑ i i ∑ j P ( X = i , Y = j ) \sum_{i}i\sum_jP(X=i,Y=j) iijP(X=i,Y=j)Y随机变量已经固定接下来是枚举X,那么就变成了P(X=i),后面同理。

常用技巧-前缀和技巧

离散变量:以整数为分布的变量
对于一个离散变量X,有P(X=K)=P(X<=K)-P(X<=K-1)

例1:有 n 个随机变量量 X[1…n],每个随机变量量都是从 1…S 中 随机一个整数,求 Max(X[1…n]) 的期望

我们设Y为答案,那么答案就是E(Y)
根据定义有:E(Y)= ∑ i = 1 S P ( Y = i ) ∗ i \sum^S_{i=1}P(Y=i)*i i=1SP(Y=i)i
P ( Y = i ) = P ( Y < = i ) − P ( Y < = i − 1 ) = ( i S ) n − ( i − 1 S ) n P(Y=i)=P(Y<=i)-P(Y<=i-1)=({i\over{S}})^n-({i-1\over{S}})^n P(Y=i)=P(Y<=i)P(Y<=i1)=(Si)n(Si1)n
即最大值<=i就是所有X[1…n]的数都小于i
所以E(Y)= ∑ i = 1 S ∗ ( ( i S ) n − ( i − 1 S ) n ) ∗ i \sum^S_{i=1}*(({i\over{S}})^n-({i-1\over{S}})^n)*i i=1S((Si)n(Si1)n)i

例2:证明:概率为p的事件期望1/p次后发生
根据定义:
设X表示第几次时成功
E ( X ) E(X) E(X)= ∑ i = 1 ∞ P ( X = i ) ∗ i \sum^\infty_{i=1}P(X=i)*i i=1P(X=i)i

= ∑ i = 1 ∞ ( P ( X > = i ) − P ( X > = i + 1 ) ) ∗ i \sum^\infty_{i=1}(P(X>=i)-P(X>=i+1))*i i=1(P(X>=i)P(X>=i+1))i

观察:当i=1时P(X>=2)的系数为-1,而当i=2时原先的P(X>=0)的系数为2,那么得P(X>=2)的系数为1,以此类推可得所有的P(X>=i)的系数都为1

那么E(X)= ∑ i = 1 ∞ P ( X > = i ) − − − − 重 要 结 论 \sum^\infty_{i=1}P(X>=i)----重要结论 i=1P(X>=i)

= ∑ i = 1 ∞ ( 1 − p ) i − 1 \sum^\infty_{i=1}(1-p) ^{i-1} i=11p)i1【P(X>=i)表示至少在第i次后成功】

= 1 p 1\over{p} p1 【根据等比数列求和,当n趋近正无穷时的公式】

拿球问题

• 箱子里有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后不放回,求取出的数字之和的期望【解】:可以转换成在n个数中选m个数求取出的数字之和的期望值,那么对于每一种取法,每一个数字要么选要么不选。

【解】设S为最终答案(显然是一个随机变量),然后令S= ∑ i = 1 n X i \sum^{n}_{i=1}Xi i=1nXi
Xi有两种取值,1.不选 为0 2.选了 为i
那么E(S)=E( ∑ i = 1 n X i \sum^{n}_{i=1}Xi i=1nXi)= ∑ i = 1 n \sum^{n}_{i=1} i=1nE(Xi)
而E(Xi)= m n m\over{n} nm *i(n个里面选m个选到的概率显然为 m n m\over{n} nm)
那么E(S)= m n m\over{n} nm *(1+2+3+4+…+n)= m n m\over{n} nm * ( 1 + n ) ∗ n 2 {(1+n)*n\over{2}} 2(1+n)n= m ( n + 1 ) 2 m(n+1)\over2 2m(n+1)

• 箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后放回,求取出的数字之和的期望

【解】:设S为最终答案,令S= ∑ i = 1 m X i \sum^m_{i=1}Xi i=1mXi
其中Xi表示第i次取数的大小,那么显然E(S)=E( ∑ i = 1 m X i \sum^m_{i=1}Xi i=1mXi)= ∑ i = 1 m \sum^m_{i=1} i=1mE(Xi)
而E(Xi)= ∑ i = 1 n \sum^n_{i=1} i=1n 1 n 1\over{n} n1 * i i i= 1 n 1\over{n} n1* ( 1 + n ) ∗ n 2 {(1+n)*n\over2} 2(1+n)n
而因为每一次都放回,所以显然E[X1]=E[X2]=E[X3]=…,每一次取数的分布是均等的
那么E[S]=m* 1 n 1\over{n} n1* ( 1 + n ) ∗ n 2 {(1+n)*n\over2} 2(1+n)n= m ( n + 1 ) 2 m(n+1)\over2 2m(n+1)

• 箱⼦里有 n 个球 1…n,你要从里⾯拿 m 次球,拿了后以 p1 的概率放回,以 p2 的概率放回两个和这个相同的球, 求取出的数字之和的期望

【解】:类似于上面考虑每一个球被拿了几次,设S最终答案(显然是一个随机变量),然后令S= ∑ i = 1 n X i \sum^{n}_{i=1}Xi i=1nXi,Xi表示第i个球做出的贡献,则Xi=Yi*i,其中Yi表示第i个球被取出几次,那么明显令T= ∑ i = 1 n \sum^{n}_{i=1} i=1nYi=m,那么E(T)= ∑ i = 1 n \sum^{n}_{i=1} i=1nE(Yi)=m,而每一个球的机会是均等的,所以E(Y1)=E(Y2)=…E(Yn),所以E(Yi)= m n {m}\over{n} nm
所以E(S)= ∑ i = 1 n \sum^{n}_{i=1} i=1nE(Xi)= ∑ i = 1 n \sum^{n}_{i=1} i=1nE(Yi)*i= m ( n + 1 ) 2 m(n+1)\over2 2m(n+1)
然后就发现其实和p1,p2那些没什么关系,那么即使有更多类似情况也是如此。
看似不同的三个问题其实答案是一样的: m ( n + 1 ) 2 m(n+1)\over2 2m(n+1)

游走问题

1• 在一条 n 个点的链上游走,求从一端⾛到另一端的期望步数

【解】:设S为最终答案,则所求为E(S),令S= ∑ i = 1 n − 1 X i \sum^{n-1}_{i=1}Xi i=1n1Xi
X i Xi Xi表示第i个点随机游走第一次到i+1的步数
则E(S)=E( ∑ i = 1 n − 1 X i \sum^{n-1}_{i=1}Xi i=1n1Xi)= ∑ i = 1 n − 1 \sum^{n-1}_{i=1} i=1n1E(Xi)
现在主要问题变成求E[Xi],显然E[X1]=1*1=1
E [ X 2 ] = 0.5 ∗ 1 ( 直 接 到 ) + 0.5 ∗ ( E [ X 1 ] + E [ X 2 ] ) ( 返 回 1 后 面 要 到 2 再 到 3 ) E[X2]=0.5 * 1(直接到)+0.5*(E[X1 ] +E[X2]) (返回1后面要到2再到3) E[X2]=0.51()+0.5(E[X1]+E[X2])(123)
以此可以推得 E [ X 2 ] = E [ X 1 ] + 2 = 3 E[X2]=E[X1]+2=3 E[X2]=E[X1]+2=3,类似 E [ X i ] = E [ X i − 1 ] + 2 E[Xi]=E[Xi-1]+2 E[Xi]=E[Xi1]+2
那么最终就变成了一个等差数列求和得 E ( S ) = ( n − 1 ) 2 E(S)=(n-1)^2 E(S)=(n1)2

2• 在一张 n 个点的完全图上游⾛,求从一个点走到另⼀个点的期望步数

【解】:有 1 n − 1 1\over{n-1} n11的概率成功–不管走到哪个点到达目标点的概率始终不变
因此期望步数为n-1

3• 在⼀张 2n 个点的完全二分图上游走,求从⼀个点⾛到另⼀个点的期望步数

【解】:A.从一个点到同侧点的期望步数 B.从一个点到不同侧点的期望步数
明显A=1+B(先到异侧转换为B) 而B= 1 n 1\over n n1 * 1(有 1 n 1\over n n1的概率直接到)+ n − 1 n {n-1}\over{n} nn1*(A+1)(先走一步没到达地点转化为A)

4• 在⼀张 n 个点的菊花图上游走,求从一个点⾛到另⼀个点的期望步数

【解】:A.叶子到叶子 B.叶子到中心 C.中心到叶子 的期望步数
明显B=1*1=1 而A=B+C=1+C 而 C= 1 n − 1 1\over{n-1} n11 * 1+ n − 2 n − 1 {n-2}\over{n-1} n1n2 * (A+1)

5• 在⼀棵 n 个点的树上游走,求从根走到 x 的期望步数

【解】:转化为x走到根的期望步数,倒着做。
设f[i]为节点i第一次走到fa[i]的步数,设d[i]为i节点的度数,f[1]=0
则f[i]= 1 d [ i ] 1\over{d[i]} d[i]1*1+ ∑ y 属 于 i 的 儿 子 \sum_{y属于i的儿子} yi * 1 d [ i ] 1\over{d[i]} d[i]1 *(1+f[y]+f[x]) 类似于1的思想
最后的答案E(S)= ∑ y 属 于 根 节 点 到 x 的 路 径 上 \sum_{y属于根节点到x的路径上} yxf[y]

6• 构造一张200个点的无向图,使得上面从 S ⾛到 T 的随机游走期望步数>=1000000

假设我们让S成为链的一端点,T成为链的另一个端点
在前面已经提过1的期望步数时 n 2 n^2 n2级别的,我们若使1中的E[X1]=1改为 n 2 n^2 n2即可以达到我们的目的。那就可以构造成左边一个100个点的完全图,其中一个点延申出去一百个点的链,E[X1]= 1 n 1\over n n1 * 1+ n − 1 n {n-1}\over n nn1 * (1+n-1+E[X1])
[其中的n-1则为2中问题答案]

方法小总结:

先设一个答案,将答案拆成若干份,对于每一个小份进行更细的操作,考虑每一种情况,利用期望的线性性进行操作即可。【一般操作】

1.设S为答案
2.设S= ∑ i = . . . . . . \sum^{...}_{i=...} i=......Xi 然后Xi表示…
3.根据线性性E[S]=E[ ∑ i = . . . . . . \sum^{...}_{i=...} i=......Xi ] = ∑ i = . . . . . . \sum^{...}_{i=...} i=...... E[Xi]
4.然后表示出E[Xi]即可…

还有一些难的问题我还有点懵,有些用组合计数可以很好理解。

推荐题目:
在这里插入图片描述
在这里插入图片描述
发现大佬博客:
https://www.cnblogs.com/lcyfrog/p/11258351.html
https://www.luogu.org/blog/scm0318zztoier/main-actor20190727-jin-hua-ji-xun-zong-jie

Python网络爬虫与推荐算法新闻推荐平台:网络爬虫:通过Python实现新浪新闻的爬取,可爬取新闻页面上的标题、文本、图片、视频链接(保留排版) 推荐算法:权重衰减+标签推荐+区域推荐+热点推荐.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值