给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a” ,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。
示例 1:
输入: 12258
输出: 5
解释: 12258有5种不同的翻译,分别是"bccfi", “bwfi”, “bczi”, “mcfi"和"mzi”
思路:
dp的思想。
dp[i]=dp[i-1]或者dp[i-1]+dp[i-2]
有两个思路:这里 需要说明一点,dp[0]=dp[1]=1;为了节省空间,这里只用a、b两个数来代替dp数组,这样节省了空间。a代表dp[i-2] b代表dp[i-1]
第一种:我们使用String来对int 类型的num进行转换,这样的目的是为了方便拆分,然后进行比较。
第二种:利用到结果的对称性,即从左往右开始算和从右往左开始算的结果是相同的,但是说实话从右往左有点绕===但是这样可以节省一个String类型的str
class Solution {
public int translateNum(int num) {
//方法1 使用String进行转换求解
String str=String.valueOf(num);
int a=1,b=1;
//用a,b来代替 dp[i-1] dp[i-2],节省空间
//这里 str.length()需要等号,因为 Str.substring()函数的限制,它不包含右边的那个数
for(int i=2;i<=str.length();i++){
String temp=str.substring(i-2,i);
//? 表达式
int c=temp.compareTo("10")>=0&&temp.compareTo("25")<=0?a+b:b;
a=b;
b=c;
}
return b;
//方法2 利用左右结果的对称性,我们可以从右往左,然后利用取余数和取商来求结果,节省一个String的空间
int a=1,b=1;
int y=num%10;
while(num>0){
num/=10;
int x=num%10;
int c=x*10+y;
int temp=c>=10&&c<=25?a+b:b;
a=b;
b=temp;
y=x;
}
return a;
}
}