146. LRU 缓存机制

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:

LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?

思路:

使用一个双向链表+hashmap实现.
java 中的linkedlist 实现了双向链表,可以直接使用,也可以自己手写.
我们使用双向链表保存最近最久未使用的序列,其中尾节点保存的是最久未使用的node.
我们在每一次get的时候,不止要返回val值,还要进行更新使用序列,先删除原来的node节点,然后让这个node节点到序列的第一个里面去.
当我们put的时候,如果这个cache满了,那么我们就需要进行淘汰策略.把队列的尾节点给remove掉,然后把保存结果的hashmap中对应的node节点删除,之后执行添加操作,注意这个时候添加要添加到头节点.

class Node {
    int key;
    int val;
    Node(int key,int val){
        this.key=key;
        this.val=val;
    }
 }
class LRUCache {
    private int cap;
    private LinkedList<Node> list;
    private Map<Integer,Node> map;
    public LRUCache(int capacity) {
        this.cap=capacity;
        map=new HashMap<>();
        list=new LinkedList<>();
    }
    
    public int get(int key) {
        if(!map.containsKey(key))
            return -1;
        Node node=map.get(key);
        put(key,node.val);
        return node.val;
    }
    
    public void put(int key, int value) {
        Node node=new Node(key,value);
        if(map.containsKey(key))
        {
            list.remove(map.get(key));
            list.addFirst(node);
            map.put(key,node);
        }else{
            if(cap==list.size()){
                Node last = list.removeLast();
                map.remove(last.key);
            }
            list.addFirst(node);
            map.put(key,node);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值