运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
思路:
使用一个双向链表+hashmap实现.
java 中的linkedlist 实现了双向链表,可以直接使用,也可以自己手写.
我们使用双向链表保存最近最久未使用的序列,其中尾节点保存的是最久未使用的node.
我们在每一次get的时候,不止要返回val值,还要进行更新使用序列,先删除原来的node节点,然后让这个node节点到序列的第一个里面去.
当我们put的时候,如果这个cache满了,那么我们就需要进行淘汰策略.把队列的尾节点给remove掉,然后把保存结果的hashmap中对应的node节点删除,之后执行添加操作,注意这个时候添加要添加到头节点.
class Node {
int key;
int val;
Node(int key,int val){
this.key=key;
this.val=val;
}
}
class LRUCache {
private int cap;
private LinkedList<Node> list;
private Map<Integer,Node> map;
public LRUCache(int capacity) {
this.cap=capacity;
map=new HashMap<>();
list=new LinkedList<>();
}
public int get(int key) {
if(!map.containsKey(key))
return -1;
Node node=map.get(key);
put(key,node.val);
return node.val;
}
public void put(int key, int value) {
Node node=new Node(key,value);
if(map.containsKey(key))
{
list.remove(map.get(key));
list.addFirst(node);
map.put(key,node);
}else{
if(cap==list.size()){
Node last = list.removeLast();
map.remove(last.key);
}
list.addFirst(node);
map.put(key,node);
}
}
}