TensorFlow 未使用高级 CPU 指令,CPU存在警告:I tensorflow/core/platform/cpu_feature_guard.cc:193] I tensorflow/.

在测试TensorFlow安装时,遇到一条提示信息,表示当前TensorFlow二进制文件已针对AVX和AVX2指令集优化,但CPU支持这些指令。这并不影响程序运行,不过可以通过重新编译TensorFlow来解决。解决方法包括忽略警告或卸载现有版本,安装支持AVXAVX2的TensorFlow,可能需要配合CUDA、cudnn,并确保版本匹配。此外,也可以通过代码忽视此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、项目场景:

在测试tensorflow安装是否成功时,出现以下问题,虽然不影响程序的运行,还是好奇的查了下解决办法。
I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.”


2、原因分析:

报错代码:

I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

表明 CPU 支持AVX AVX2 (可以加速CPU计算),但是你安装的 TensorFlow 版本不支持


3、解决方案:

1、可以忽略,或者加代码忽视这些问题。
2、如果想解决这个问题,可以卸载原来版本的tensorflow,安装cuda和cudnn和tensorflow对应的版本,链接地址:GPU对应cuda
卸载使用命令如下:

pip uninstall tensorflow

完成后可以用pip list查看一下所有库,检查是否成功卸载。
安装tensorflow,进入anaconda创建的虚拟环境

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade tensorflow-gpu
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花雨12138

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值