A. DIY Wooden Ladder
签到题,比较现在能够有的阶梯数和规定的阶梯数就可以了
# include <bits/stdc++.h>
using namespace std;
const int MAXN=1e5+100;
int a[MAXN];
int cmp(int a,int b)
{
return a>b;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
int n;
int k=0;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sort(a+1,a+n+1,cmp);
int aa=a[1],bb=a[2];
//cout<<"@@"<<aa<<" "<<bb<<endl;
int shortt=min(aa,bb)-1;
//cout<<"###"<shortt<<endl;
for(int i=3;i<=n;i++){
if(a[i]>=1){
k++;
}
}
k=min(shortt,k);
cout<<k<<endl;
}
return 0;
}
B. Pillars
只要从最大的那个开始向两边都是降序就可以移动,否则不行,(就是一下移动左边的盘,一下移动右边的盘。可能没有讲清楚,画个样例,自己稍微感受一下)
# include <bits/stdc++.h>
using namespace std;
const int MAXN=2e5+100;
int a[MAXN];
int main()
{
int n;
int flag=1;
scanf("%d",&n);
int maxx=0,maxi=1;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>maxx){
maxx=a[i];
maxi=i;
}
}
int aa=a[maxi];
for(int i=maxi+1;i<=n;i++){
if(aa>a[i]){
aa=a[i];
}else{
flag=0;
break;
}
}
int bb=a[maxi];
for(int i=maxi-1;i>=1;i--){
if(bb>a[i]){
bb=a[i];
}else{
flag=0;
break;
}
}
if(flag){
printf("YES");
}else{
printf("NO");
}
return 0;
}
C. Array Splitting
假设选取做区间右端点的数分别是a,b,c,d,先假设这四个好了,那么上诉式子就是a[a]-a[1]+a[b]-a[a+1]+a[c]-a[b+1]+a[d]-a[c+1],(a[d]==a[n])移项可以知道(a[n]-a[1])+(a[a]-a[a+1])+(a[b]-a[b+1])+(a[c]-a[c+1]),而a[n]-a[1]是定的,所以只要后面最小就可以了
# include <bits/stdc++.h>
using namespace std;
const int MAXN=3e5+100;
int a[MAXN];
pair<int,int> p[MAXN];
int main()
{
int n,k;
int ans=0;
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
if(k==n){
printf("0");
}else if(k==1){
ans=a[n]-a[1];
printf("%d",ans);
}else{
ans=a[n]-a[1];
for(int i=1;i<n;i++){
p[i].first=a[i]-a[i+1];
p[i].second=i;
}
sort(p+1,p+n+1);
for(int i=1;i<k;i++){
ans+=p[i].first;
}
printf("%d",ans);
}
return 0;
}
D. Yet Another Subarray Problem
题目中是向上取整的符号,希望读者没有和菜鸡我一样看成向下取整(还被学长批评了一顿,刚好被教练看到,丢人啊 )。读者可以去做一下对大子段和(应该也可以叫最大区间和),这里就是把区间长度限定为m
# include <bits/stdc++.h>
using namespace std;
const int MAXN=3e5+100;
typedef long long LL;
LL a[MAXN];
LL pre[MAXN];
LL dp[MAXN][20];
int main()
{
int n,m,k;
scanf("%d %d %d",&n,&m,&k);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
pre[i]=pre[i-1]+a[i];
}
LL ans=0;
for(int i=1;i<=n;i++){//枚举每一个位置
for(int j=1;j<=m;j++){//从这个位置向前取j个,
if(j<=i){//这个保证每一次都是要减k的
dp[i][j]=max(pre[i]-pre[i-j],pre[i]-pre[i-j]+dp[i-j][m])-k;
}
ans=max(dp[i][j],ans);
}
}
cout<<ans<<endl;
return 0;
}